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1 Introduction

This short note comments on the SELEX analysis as presented in their Fermi-
lab and BEACH2002 talks. Both talks are presently available on the Web at
http://fn781a.fnal.gov/selex wac.ps.gz and at
http://beach2002.physics.ubc.ca/talks/Peter Cooper.pdf.

Here we discuss one problem with the SELEX talks, mainly the statement
of the significance of the signals in terms of ”number of sigmas”. We believe it
is only natural for the scientific community to interpret such numbers in terms
of the Gaussian distribution which is the only interpretation for which these
numbers have a definite correspondence to a level of significance. However,
SELEX is apparently defining ”sigma” as the standard deviation. Since we are
dealing with Poisson statistics, the standard deviation is the square root of the
number of counts. This is an exact statement. However, the probability for a
deviation from the mean larger than a specified number of standard deviations
is not the same for a Poisson as compared to a Gaussian distribution. It is
typically much larger when the number of counts is small. Thus the appearance
of bogus signals as large as those seen by SELEX is more probable than they
imply by stating a number of ”sigmas”. The significance of the SELEX results
is also lowered by the consideration that they looked for signals of any width
anywhere within a large mass range.

2 General Comments

The crucial question in the Selex talks is whether or not they see a signal.
From a statistical point of view this should be done by performing a hypothesis
test with the null hypothesis Ho:”There is no signal present”. Rejecting this
Ho is then equivalent to claiming a discovery. The standard way to perform
a hypothesis test is to compute the p-value, defined here as the probability of
seeing a bump as large as or larger than the one observed in the real data when
there really is no signal. The p-value will be very small for significant signals.
The Selex hypothesis test is based on the quantity S/

√
B. The use of this
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variable as a measure of significance can only be justified on the basis of the
Gaussian approximation to the Poisson distribution. The p-value is then found
by P (Z > S/

√
B) where Z is a Gaussian random variable. Let us investigate

how good an approximation this actually is. For this we generated 1 million
observations Xi from a Poisson distribution with rate b = 6.1 and another 1
million observations Yi from a Poisson with rate τ ∗ b = 24.25 ∗ 6.1 = 147.9,
Here b is the background rate in the signal region and τ is the ratio between
the sideband and signal backgrounds. The numbers were chosen to coincide
roughly with the most significant of the SELEX bumps. We want to see what
the probability is of seeing a ”signal” of a certain size when there is really only
background. Such a large sample size is necessary because we are going to probe
the extreme tails of this distribution. For each of these 1 million pairs we find
S/
√

B = (Xi − Yi/τ)/
√

Yi/τ . Next we count the number of S/
√

B > t, were t
varies from 3 to 6.5. These numbers are then compared to the exact quantiles
from a Gaussian distribution, that is the probabilities P (Z > t). The results
are in the following table:

t P (Z > t) # S/
√

B > t Ratio#S/
√

B>t
P (Z>t)

3.0 1.35 ∗ 10−3 5.46 ∗ 10−3 4
3.5 2.33 ∗ 10−4 1.85 ∗ 10−3 8
4.0 3.17 ∗ 10−5 5.85 ∗ 10−4 19
4.5 3.40 ∗ 10−6 1.92 ∗ 10−4 57
5.0 2.87 ∗ 10−7 5.7 ∗ 10−5 199
5.5 1.90 ∗ 10−8 1.6 ∗ 10−5 842
6.0 9.87 ∗ 10−10 7 ∗ 10−6 7095
6.5 4.02 ∗ 10−11 2 ∗ 10−6 49800

What does this mean for the significance? Take the particular case when
S/
√

B = 6.3. From (a more detailed version of) the table above this corre-
sponds to p = 3 ∗ 10−6. This in turn corresponds to a significance level of a
Gaussian distribution of about 4.5σ. In such a case, we argue that SELEX
should be quoting a value of 4.5σ for the significance instead of the value of 6.3.

3 Consideration of the signal position

In the BEACH2002 talk, SELEX brings up the point (worded differently) that
the appropriate p-value for their ”discovery” should be adjusted for the fact that
they did not know the exact location where these signals had to be. They looked
for signals in a wide range of invariant mass. This increases the probability of
a bogus signal appearing from the background thus increasing the p-value. In
that talk, SELEX says that the adjustment is accomplished by multiplying
the basic p-value by the ratio between the size of the search region to the signal
region. A much more complicated calculation is necessary to do the appropriate
adjustment for this effect but in the analysis below we have used the SELEX
prescription to obtain a quick result which reflects the effect somewhat but
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still severely underestimates the correct p-value. In order to do this, one needs
to know the ratio of the search region to the signal region (here called r).
SELEX only quotes the value (100) for their most significant bump but, with
a signal region of 10MeV , this corresponds to a search region of 1GeV . We
have assumed this is also the size of the search region for the other two bumps
and have calculated the corresponding p values. In order to distinguish the
p-values and sigmas obtained when this effect has been considered we shall use
the adjective ”total” as opposed to ”basic” for the case when it has not.

4 Analysis Using Alternative Methods

Because of the duality of confidence intervals and hypothesis tests we carry
out the hypothesis test by simply finding confidence intervals with a variety of
confidence levels α’s until we find the threshold α where the lower confidence
limit changes from a positive number to 0. The p-value is then given by p = 1−α.
For a given p-value, one can easily calculate a significance in terms of σ. As an
example consider the first case below. There we have x = 22 events in the signal
region and an estimated background rate of 6.1. The Feldman-Cousins lower
limit is equal to 0 for α = 0.99999937 and greater than 0 for α = 0.9999993.
Therefore the p-value is 6.7 ∗ 10−7 and by equivalence to confidence intervals
from a Gaussian distribution this amounts to a 4.9σ effect.

We have used both the unified method of Feldman and Cousins and the
method of Rolke and Lopez to calculate the significance of the Selex signals.
These methods are typically used to calculate confidence limits but they can be
used to calculate p-values as explained in the previous paragraph. The main
advantage of these methods is that they make no prior assumption about the
existence (or non-existence) of a signal. Also they both take into account the
Poisson statistics correctly. The difference between them is that the Rolke-Lopez
method takes into consideration the uncertainty in the background rate while
Feldman-Cousins does not. For the problem at hand, the differences between
them will be relatively small since the size of the sideband samples is rather
large. Here the two methods give slightly different limits and thus slightly
different p-values.

Although we believe the Selex estimates for the numbers of signal and back-
ground events are not quite correct, in the following we have assumed that they
are, in order to emphasize that the main problem with the significance claim
is in the methodology used. In order to use Rolke-Lopez, one needs to know
the ratio of sideband background to signal background (τ). This ratio has been
determined using the Selex linear background fits and their signal and back-
ground regions. For a given number of background events in the signal region,
the Rolke-Lopez results are highly insensitive to this ratio over the range of
reasonable choices for the sizes of these regions.

Selex apparently made some changes between the talk at the Fermi lab and
the talk at Beach 2002. The following table has the numbers from both talks:
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Talk ccd+ ccu++ ccu*++
Fermi Lab 15.8√

6.2
= 6.4σ 8√

2
= 5.6σ 27√

35
= 4.5σ

Beach 2002 15.9√
6.1

= 6.3σ 7.6√
2.6

= 4.8σ 27.4√
47

= 4.0σ

In the following analysis we will use the (later) numbers from the Beach 2002
talk.

4.1 SELEX ccd+ Histogram

Signal events 15.9
Estimated background events 6.1
Signal region: 3.515-3.525
normalized linear background: y = −24.75 + 8.16x
τ = 24.25
r = 100

Method Basic p Basic σ Total p Total σ
Selex claimed confidence level 1.5 ∗ 10−10 6.3 1.5 ∗ 10−8 5.54
Selex true confidence level 3 ∗ 10−6 4.5 3 ∗ 10−4 3.4
Feldman-Cousins 5.15 ∗ 10−7 4.89 5.15 ∗ 10−5 3.90
Rolke-Lopez 1.65 ∗ 10−6 4.65 1.65 ∗ 10−4 3.59

4.2 SELEX ccu++ Histogram

Signal events 7.6
Estimated background events 2.6
Signal region: 3.448-3.472
normalized linear background: y = −78.7 + 23.8x
τ = 10.7
r = 41.7
Method Basic p Basic σ Total p Total σ
Selex claimed confidence level 7.9 ∗ 10−7 4.80 3.3 ∗ 10−5 3.99
Selex true confidence level 5.24 ∗ 10−4 3.28 2.2 ∗ 10−2 2.02
Feldman-Cousins 3.8 ∗ 10−4 3.37 1.6 ∗ 10−2 2.15
Rolke Lopez 1.3 ∗ 10−3 3.02 5.4 ∗ 10−2 1.61

4.3 SELEX ccu*++ Histogram

Signal events 27.4
Estimated background events 47
Signal region: 3.733-3.833
normalized linear background: y = 5.8− 0.78x
τ = 2.56
r = 10
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Method Basic p Basic σ Total p Total σ
Selex claimed confidence level 3.2 ∗ 10−5 4.0 3.2 ∗ 10−4 3.41
Selex true confidence level 1.2 ∗ 10−3 3.04 1.2 ∗ 10−2 2.25
Feldman-Cousins 1.6 ∗ 10−4 3.59 1.6 ∗ 10−3 2.95
Rolke Lopez 2.5 ∗ 10−3 2.81 2.5 ∗ 10−2 1.96

5 A Mini MC Study

The bumps in the Selex graphs are actually quite impressive at first glance. Is
it possible to see bumps as large as these even if there is no signal at all? In
order to study this question we performed the following mini MC study using
the ccu++ histogram:

• Generate 39 events, as in the histogram, from the linear background den-
sity f(x) = −78.7 + 23.8x on [3.31, 3.6]

• Check whether there are 4 consecutive bins to the left of 3.4725 with a
total of events ≥ 10

• If so, check whether these 4 bins form a nice Gaussian shape

• If so, stop, otherwise start over.

We ran this MC, and on run #1742 it stopped with this:
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Next we repeated this mini MC study 50 times, and we found a signal at
least as nice as this one on average every 7010 runs. 1/7010 = 1.4 ∗ 10−4

corresponds to 3.6σ. This significance level is much closer to the ones given by
Feldman-Cousins and Rolke-Lopez than the one obtained from S/

√
B. Notice

that here we used rather strong requirements for the shape as well as the size
of the peak and yet found plenty of nice peaks.

If we drop the requirement of a ”nice” Gaussian shape and only look for at
least 11 events (9 over a background of 2), then we can find this on average
every 1 in 374 runs, corresponding to 2.79 sigmas.

6 Conclusions

We arrive at the following conclusions:

• The confidence levels claimed by Selex are too large, primarily because
the distribution of S/

√
B in the extreme tails is not Gaussian.

• The correct way to compute the significance levels and the p-values is by
using the Rolke-Lopez method. Note that computing ”adjusted” p-values
and significance levels through a mini MC as described in section 2 and
carried out for each of the 3 signals leads to p-values very close to those
given by the Rolke-Lopez method.

• As correctly pointed out by Selex, all the significance levels are too high
because the signal peak was allowed to be anywhere in the mass range.

• Has Selex discovered new particles? According to our analysis their best
candidate has a significance level of about 3.6σ. Whether this is sufficient
for claiming a discovery is a judgment call that only the Selex group can
make.
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