Rare Kaon Decays from KTeV E. Cheu University of Arizona

- Direct CP violation in $K_L \rightarrow \pi^0 l^+ l^-$
- The KTeV Detector
- KTeV Measurements of $K_L \rightarrow \pi^0 l^+ l^-$
- Summary

Direct CP Violation in $K_L \rightarrow \pi^0 l^+ l^-$

• Direct CP violation: $K_2 \rightarrow CP$ even state.

- $K_2 \to \pi^0 \gamma^*$ and $K_2 \to \pi^0 Z$
- $K_2 \rightarrow \pi^0 W^* W^*$

Other contributions to $K_L \rightarrow \pi^0 l^+ l^-$

Theoretical Predictions

CP Violating terms

•
$$\mathsf{BR}(K_L \to \pi^0 e^+ e^-) \sim (17 \pm 10) \times 10^{-12}$$

- BR($K_L \to \pi^0 \mu^+ \mu^-$) ~ (9 ± 6) × 10⁻¹²
- CP Conserving terms
 - BR($K_L \to \pi^0 e^+ e^-$) ~ 0.5 × 10⁻¹²
 - BR($K_L \to \pi^0 \mu^+ \mu^-$) ~ 5 × 10⁻¹²

Total

- **BR** $(K_L \to \pi^0 \nu \bar{\nu}) \sim (2.6 \pm 1.2) \times 10^{-11}$
- $\mathsf{BR}(K_L \to \pi^0 e^+ e^-) \sim (2 \pm 1 \times 10^{-11})$
- $\mathsf{BR}(K_L \to \pi^0 \mu^+ \mu^-) \sim (1.5 \pm 0.5) \times 10^{-11}$

The KTeV Collaboration

The KTeV Detector

Excellent particle ID

- Csl calorimeter
- Planar TRDs
- Good Tracking
 - Better than 100µm
 resolution
- Clean beams.

Rare Kaon Decays from KTeV

KTeV Data Taking

KTeV Physics Program

	E832	E799
CP Violation	$Re(\epsilon'/\epsilon)$	$K_L \to \pi^0 l^+ l^-$
	Charge Asymmetry	$K_L \to \pi^+ \pi^- e^+ e^-$
	Φ_{+-} , $\Phi_{+-\gamma}$	
New Phenomena	$\Delta \Phi$	$K_L \to \pi^0 e^{\pm} \mu^{\mp}$
	R^0 Search	H dibaryon search
CKM Physics	$K_L \to \pi^0 \gamma \gamma$	$K_L \to l^+ l^- l^+ l^-$
	V _{us} Measurement	$K_L \to l^+ l^- \gamma$
		$K_L \rightarrow l^+ l^- \gamma \gamma$
		$\pi^0 \rightarrow e^+e^-, e^+e^-e^+e^-$
		Hyperon Decays

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ Analysis

- **P** Theoretical uncertainties \sim 1%.
- Theory: 3×10^{-11}
- Search for large missing p_T .
 - $\ \, {} \ \, {} \ \, \pi^0 \rightarrow e^+e^-\gamma$
 - **•** Two tracks, electron id, and one γ .

Calorimeter Performance

Resolution.

- Energy: < 1% over all energies of interest.
- Position: ~
 1.8mm/1.0mm for large/small crystals.
- Rejection.
 - $E/p \text{ cut} \rightarrow 500:1$ rejection.

$K_L \to \pi^0 \nu \bar{\nu}$ Result

The $K_L \rightarrow \pi^0 e^+ e^-$ Decay

Pros:

- Reconstruct total decay (cf $K_L \rightarrow \pi^0 \nu \bar{\nu}$)
- Cons:
 - Backgrounds from $K_L \rightarrow e^+ e^- \gamma \gamma$.
 - Contributions from indirect and CP conserving terms.
- Previous best limit: E799-I
 - $BR(K_L \to \pi^0 e^+ e^-) < 4.3 \times 10^{-9}$
- **•** New Physics \rightarrow BR enhancement.

$K_L \rightarrow \pi^0 e^+ e^-$ Analysis

- Two oppositely charged tracks + electron id.
- Two photons.
- Backgrounds

TRD performance

Better than 200:1 rejection with 90% electron efficiency.

BEAM

$K_L \rightarrow e^+ e^- \gamma \gamma$ Analysis

Rare Kaon Decays from KTeV

$K_L \rightarrow \pi^0 e^+ e^-$ Analysis

$K_L \rightarrow \pi^0 e^+ e^-$ Kinematic Variables

Angle btwn $p_{e^+e^-}$ and γ in $\gamma\gamma$ CM. Signal is uniform due to π^0 spin.

Smallest angle between photon and e^{\pm} in K_L CM. Bkg angle small: bremsstrahluhng.

$K_L \rightarrow \pi^0 e^+ e^-$ Result

One candidate event.

- Background Estimate:
 - Ellipse: 0.99 ± 0.35
 - **•** Box: 3.9 ± 1.4
- Acceptance: Lower by 30% from 1997
 - Higher accidental rates in 1999.

$K_L \rightarrow \pi^0 \mu^+ \mu^-$ Analysis

- **P** Two oppositely charged tracks + μ id.
- Two photons.
- Backgrounds
 - $L \to \pi^+ \pi^- \pi^0$
 - $L \to \pi \mu \nu + 2 \gamma_{acc}$
 - $K_L \to \mu^+ \mu^- \gamma \gamma$

Rare Kaon Decays from KTeV

$K_L \rightarrow \mu^+ \mu^- \gamma \gamma$ Result

First observation.

- Four events with 0.16 ± 0.08 background events.
- QED calculation: $(9.1 \pm 0.8) \times 10^{-9}$
- Dangerous background to $K_L \rightarrow \pi^0 \mu^+ \mu^-$.

 $\mathsf{BR}(K_L \to \mu^+ \mu^- \gamma \gamma) = (10.4^{+7.5}_{-5.9} \pm 0.7) \times 10^{-9} \text{ with } m_{\gamma\gamma} \ge 1 \text{ MeV}/c^2$

$K_L \rightarrow \pi^0 \mu^+ \mu^-$ Kinematic Variables

- Same definitions as $K_L \rightarrow \pi^0 e^+ e^-$
- $\cos \Theta_{\pi}$
 - $\pi^0 \operatorname{spin} \to \operatorname{uniform}$ in signal.
 - Θ_{min}
 - Less effective in this mode.
 - μ have less radiation.

$K_L \rightarrow \pi^0 \mu^+ \mu^-$ Result

Current Status of $K_L \rightarrow \pi^0 l^+ l^-$

Summary

- Successful program of rare decay searches and measurements.
- KTeV improved upon BR($K_L \rightarrow \pi^0 \nu \bar{\nu}$) by two orders of magnitude.
 - New experiments: KOPIO, E391A
- $K_L \rightarrow \pi^0 e^+ e^-$ approaching SM value.
 - Possibility to search for new physics.
- - Full analysis of KTeV 1997+1999 data soon.
 - Expected SES $\sim 1 \times 10^{-10}$