
2 | VECTORS

Figure 2.1 A signpost gives information about distances and directions to towns or to other locations relative to the location of
the signpost. Distance is a scalar quantity. Knowing the distance alone is not enough to get to the town; we must also know the
direction from the signpost to the town. The direction, together with the distance, is a vector quantity commonly called the
displacement vector. A signpost, therefore, gives information about displacement vectors from the signpost to towns. (credit:
modification of work by “studio tdes”/Flickr)
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Introduction
Vectors are essential to physics and engineering. Many fundamental physical quantities are vectors, including displacement,
velocity, force, and electric and magnetic vector fields. Scalar products of vectors define other fundamental scalar physical
quantities, such as energy. Vector products of vectors define still other fundamental vector physical quantities, such as torque
and angular momentum. In other words, vectors are a component part of physics in much the same way as sentences are a
component part of literature.

In introductory physics, vectors are Euclidean quantities that have geometric representations as arrows in one dimension (in
a line), in two dimensions (in a plane), or in three dimensions (in space). They can be added, subtracted, or multiplied. In
this chapter, we explore elements of vector algebra for applications in mechanics and in electricity and magnetism. Vector
operations also have numerous generalizations in other branches of physics.
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2.1 | Scalars and Vectors

Learning Objectives

By the end of this section, you will be able to:

• Describe the difference between vector and scalar quantities.

• Identify the magnitude and direction of a vector.

• Explain the effect of multiplying a vector quantity by a scalar.

• Describe how one-dimensional vector quantities are added or subtracted.

• Explain the geometric construction for the addition or subtraction of vectors in a plane.

• Distinguish between a vector equation and a scalar equation.

Many familiar physical quantities can be specified completely by giving a single number and the appropriate unit. For
example, “a class period lasts 50 min” or “the gas tank in my car holds 65 L” or “the distance between two posts is 100
m.” A physical quantity that can be specified completely in this manner is called a scalar quantity. Scalar is a synonym of
“number.” Time, mass, distance, length, volume, temperature, and energy are examples of scalar quantities.

Scalar quantities that have the same physical units can be added or subtracted according to the usual rules of algebra for
numbers. For example, a class ending 10 min earlier than 50 min lasts 50 min − 10 min = 40 min . Similarly, a 60-cal

serving of corn followed by a 200-cal serving of donuts gives 60 cal + 200 cal = 260 cal of energy. When we multiply

a scalar quantity by a number, we obtain the same scalar quantity but with a larger (or smaller) value. For example, if
yesterday’s breakfast had 200 cal of energy and today’s breakfast has four times as much energy as it had yesterday, then
today’s breakfast has 4(200 cal) = 800 cal of energy. Two scalar quantities can also be multiplied or divided by each other

to form a derived scalar quantity. For example, if a train covers a distance of 100 km in 1.0 h, its speed is 100.0 km/1.0 h =
27.8 m/s, where the speed is a derived scalar quantity obtained by dividing distance by time.

Many physical quantities, however, cannot be described completely by just a single number of physical units. For example,
when the U.S. Coast Guard dispatches a ship or a helicopter for a rescue mission, the rescue team must know not only the
distance to the distress signal, but also the direction from which the signal is coming so they can get to its origin as quickly
as possible. Physical quantities specified completely by giving a number of units (magnitude) and a direction are called
vector quantities. Examples of vector quantities include displacement, velocity, position, force, and torque. In the language
of mathematics, physical vector quantities are represented by mathematical objects called vectors (Figure 2.2). We can
add or subtract two vectors, and we can multiply a vector by a scalar or by another vector, but we cannot divide by a vector.
The operation of division by a vector is not defined.

Figure 2.2 We draw a vector from the initial point or origin
(called the “tail” of a vector) to the end or terminal point (called
the “head” of a vector), marked by an arrowhead. Magnitude is
the length of a vector and is always a positive scalar quantity.
(credit: modification of work by Cate Sevilla)

Let’s examine vector algebra using a graphical method to be aware of basic terms and to develop a qualitative
understanding. In practice, however, when it comes to solving physics problems, we use analytical methods, which we’ll
see in the next section. Analytical methods are more simple computationally and more accurate than graphical methods.
From now on, to distinguish between a vector and a scalar quantity, we adopt the common convention that a letter in bold
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type with an arrow above it denotes a vector, and a letter without an arrow denotes a scalar. For example, a distance of 2.0
km, which is a scalar quantity, is denoted by d = 2.0 km, whereas a displacement of 2.0 km in some direction, which is a

vector quantity, is denoted by d→ .

Suppose you tell a friend on a camping trip that you have discovered a terrific fishing hole 6 km from your tent. It is unlikely
your friend would be able to find the hole easily unless you also communicate the direction in which it can be found with
respect to your campsite. You may say, for example, “Walk about 6 km northeast from my tent.” The key concept here is
that you have to give not one but two pieces of information—namely, the distance or magnitude (6 km) and the direction
(northeast).

Displacement is a general term used to describe a change in position, such as during a trip from the tent to the fishing hole.
Displacement is an example of a vector quantity. If you walk from the tent (location A) to the hole (location B), as shown

in Figure 2.3, the vector D→ , representing your displacement, is drawn as the arrow that originates at point A and ends

at point B. The arrowhead marks the end of the vector. The direction of the displacement vector D→ is the direction of the

arrow. The length of the arrow represents the magnitude D of vector D→ . Here, D = 6 km. Since the magnitude of a vector

is its length, which is a positive number, the magnitude is also indicated by placing the absolute value notation around the

symbol that denotes the vector; so, we can write equivalently that D ≡ | D→ | . To solve a vector problem graphically, we

need to draw the vector D→ to scale. For example, if we assume 1 unit of distance (1 km) is represented in the drawing

by a line segment of length u = 2 cm, then the total displacement in this example is represented by a vector of length
d = 6u = 6(2 cm) = 12 cm , as shown in Figure 2.4. Notice that here, to avoid confusion, we used D = 6 km to denote

the magnitude of the actual displacement and d = 12 cm to denote the length of its representation in the drawing.

Figure 2.3 The displacement vector from point A (the initial
position at the campsite) to point B (the final position at the
fishing hole) is indicated by an arrow with origin at point A and
end at point B. The displacement is the same for any of the
actual paths (dashed curves) that may be taken between points A
and B.
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Figure 2.4 A displacement D→ of magnitude 6 km is drawn

to scale as a vector of length 12 cm when the length of 2 cm
represents 1 unit of displacement (which in this case is 1 km).

Suppose your friend walks from the campsite at A to the fishing pond at B and then walks back: from the fishing pond at

B to the campsite at A. The magnitude of the displacement vector D→ AB from A to B is the same as the magnitude of the

displacement vector D→ BA from B to A (it equals 6 km in both cases), so we can write DAB = DBA . However, vector

D→ AB is not equal to vector D→ BA because these two vectors have different directions: D→ AB ≠ D→ BA . In Figure

2.3, vector D→ BA would be represented by a vector with an origin at point B and an end at point A, indicating vector

D→ BA points to the southwest, which is exactly 180° opposite to the direction of vector D→ AB . We say that vector

D→ BA is antiparallel to vector D→ AB and write D→ AB = − D→ BA , where the minus sign indicates the antiparallel

direction.

Two vectors that have identical directions are said to be parallel vectors—meaning, they are parallel to each other. Two

parallel vectors A
→

and B→ are equal, denoted by A
→

= B→ , if and only if they have equal magnitudes | A
→ | = | B→ | .

Two vectors with directions perpendicular to each other are said to be orthogonal vectors. These relations between vectors
are illustrated in Figure 2.5.
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2.1

Figure 2.5 Various relations between two vectors A
→

and B→ . (a)

A
→

≠ B→ because A ≠ B . (b) A
→

≠ B→ because they are not

parallel and A ≠ B . (c) A
→

≠ − A
→

because they have different

directions (even though | A
→ | = | − A

→ | = A) . (d) A
→

= B→

because they are parallel and have identical magnitudes A = B. (e)

A
→

≠ B→ because they have different directions (are not parallel);

here, their directions differ by 90° —meaning, they are orthogonal.

Check Your Understanding Two motorboats named Alice and Bob are moving on a lake. Given the
information about their velocity vectors in each of the following situations, indicate whether their velocity
vectors are equal or otherwise. (a) Alice moves north at 6 knots and Bob moves west at 6 knots. (b) Alice moves
west at 6 knots and Bob moves west at 3 knots. (c) Alice moves northeast at 6 knots and Bob moves south at 3
knots. (d) Alice moves northeast at 6 knots and Bob moves southwest at 6 knots. (e) Alice moves northeast at 2
knots and Bob moves closer to the shore northeast at 2 knots.

Algebra of Vectors in One Dimension
Vectors can be multiplied by scalars, added to other vectors, or subtracted from other vectors. We can illustrate these vector
concepts using an example of the fishing trip seen in Figure 2.6.
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Figure 2.6 Displacement vectors for a fishing trip. (a) Stopping to rest at point C while walking from camp (point A) to the
pond (point B). (b) Going back for the dropped tackle box (point D). (c) Finishing up at the fishing pond.

Suppose your friend departs from point A (the campsite) and walks in the direction to point B (the fishing pond), but,
along the way, stops to rest at some point C located three-quarters of the distance between A and B, beginning from

point A (Figure 2.6(a)). What is his displacement vector D→ AC when he reaches point C? We know that if he walks

all the way to B, his displacement vector relative to A is D→ AB , which has magnitude DAB = 6 km and a direction

of northeast. If he walks only a 0.75 fraction of the total distance, maintaining the northeasterly direction, at point C he
must be 0.75DAB = 4.5 km away from the campsite at A. So, his displacement vector at the rest point C has magnitude

DAC = 4.5 km = 0.75DAB and is parallel to the displacement vector D→ AB . All of this can be stated succinctly in the

form of the following vector equation:

D→ AC = 0.75 D→ AB.

In a vector equation, both sides of the equation are vectors. The previous equation is an example of a vector multiplied by a

positive scalar (number) α = 0.75 . The result, D→ AC , of such a multiplication is a new vector with a direction parallel to

the direction of the original vector D→ AB .

In general, when a vector A
→

is multiplied by a positive scalar α , the result is a new vector B→ that is parallel to A
→

:

(2.1)B→ = α A
→

.

The magnitude | B→ | of this new vector is obtained by multiplying the magnitude | A
→ | of the original vector, as expressed

by the scalar equation:

(2.2)B = |α|A.

In a scalar equation, both sides of the equation are numbers. Equation 2.2 is a scalar equation because the magnitudes
of vectors are scalar quantities (and positive numbers). If the scalar α is negative in the vector equation Equation 2.1,

then the magnitude | B→ | of the new vector is still given by Equation 2.2, but the direction of the new vector B→ is

48 Chapter 2 | Vectors

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



antiparallel to the direction of A
→

. These principles are illustrated in Figure 2.7(a) by two examples where the length

of vector A
→

is 1.5 units. When α = 2 , the new vector B→ = 2 A
→

has length B = 2A = 3.0 units (twice as long

as the original vector) and is parallel to the original vector. When α = −2 , the new vector C
→

= −2 A
→

has length

C = | − 2|A = 3.0 units (twice as long as the original vector) and is antiparallel to the original vector.

Figure 2.7 Algebra of vectors in one dimension. (a) Multiplication by a

scalar. (b) Addition of two vectors ( R→ is called the resultant of vectors

A
→

and B→ ) . (c) Subtraction of two vectors ( D→ is the difference of

vectors A
→

and B→ ) .

Now suppose your fishing buddy departs from point A (the campsite), walking in the direction to point B (the fishing
hole), but he realizes he lost his tackle box when he stopped to rest at point C (located three-quarters of the distance
between A and B, beginning from point A). So, he turns back and retraces his steps in the direction toward the campsite
and finds the box lying on the path at some point D only 1.2 km away from point C (see Figure 2.6(b)). What is his

displacement vector D→ AD when he finds the box at point D? What is his displacement vector D→ DB from point D to the

hole? We have already established that at rest point C his displacement vector is D→ AC = 0.75 D→ AB . Starting at point

C, he walks southwest (toward the campsite), which means his new displacement vector D→ CD from point C to point

D is antiparallel to D→ AB . Its magnitude | D→ CD| is DCD = 1.2 km = 0.2DAB , so his second displacement vector is

D→ CD = −0.2 D→ AB . His total displacement D→ AD relative to the campsite is the vector sum of the two displacement

vectors: vector D→ AC (from the campsite to the rest point) and vector D→ CD (from the rest point to the point where he

finds his box):

(2.3)D→ AD = D→ AC + D→ CD.

The vector sum of two (or more) vectors is called the resultant vector or, for short, the resultant. When the vectors on the

right-hand-side of Equation 2.3 are known, we can find the resultant D→ AD as follows:

(2.4)D→ AD = D→ AC + D→ CD = 0.75 D→ AB − 0.2 D→ AB = (0.75 − 0.2) D→ AB = 0.55 D→ AB.

When your friend finally reaches the pond at B, his displacement vector D→ AB from point A is the vector sum of his
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displacement vector D→ AD from point A to point D and his displacement vector D→ DB from point D to the fishing hole:

D→ AB = D→ AD + D→ DB (see Figure 2.6(c)). This means his displacement vector D→ DB is the difference of two

vectors:

(2.5)D→ DB = D→ AB − D→ AD = D→ AB + (− D→ AD).

Notice that a difference of two vectors is nothing more than a vector sum of two vectors because the second term in

Equation 2.5 is vector − D→ AD (which is antiparallel to D→ AD) . When we substitute Equation 2.4 into Equation

2.5, we obtain the second displacement vector:

(2.6)D→ DB = D→ AB − D→ AD = D→ AB − 0.55 D→ AB = (1.0 − 0.55) D→ AB = 0.45 D→ AB.

This result means your friend walked DDB = 0.45DAB = 0.45(6.0 km) = 2.7 km from the point where he finds his tackle

box to the fishing hole.

When vectors A
→

and B→ lie along a line (that is, in one dimension), such as in the camping example, their resultant

R→ = A
→

+ B→ and their difference D→ = A
→

− B→ both lie along the same direction. We can illustrate the addition

or subtraction of vectors by drawing the corresponding vectors to scale in one dimension, as shown in Figure 2.7.

To illustrate the resultant when A
→

and B→ are two parallel vectors, we draw them along one line by placing the origin

of one vector at the end of the other vector in head-to-tail fashion (see Figure 2.7(b)). The magnitude of this resultant

is the sum of their magnitudes: R = A + B. The direction of the resultant is parallel to both vectors. When vector A
→

is antiparallel to vector B→ , we draw them along one line in either head-to-head fashion (Figure 2.7(c)) or tail-to-

tail fashion. The magnitude of the vector difference, then, is the absolute value D = |A − B| of the difference of their

magnitudes. The direction of the difference vector D→ is parallel to the direction of the longer vector.

In general, in one dimension—as well as in higher dimensions, such as in a plane or in space—we can add any number of
vectors and we can do so in any order because the addition of vectors is commutative,

(2.7)A
→

+ B→ = B→ + A
→

,

and associative,

(2.8)( A
→

+ B→ ) + C
→

= A
→

+ ( B→ + C
→

).

Moreover, multiplication by a scalar is distributive:

(2.9)α1 A
→

+ α2 A
→

= (α1 + α2) A
→

.

We used the distributive property in Equation 2.4 and Equation 2.6.

When adding many vectors in one dimension, it is convenient to use the concept of a unit vector. A unit vector, which

is denoted by a letter symbol with a hat, such as û , has a magnitude of one and does not have any physical unit so that

| û | ≡ u = 1 . The only role of a unit vector is to specify direction. For example, instead of saying vector D→ AB has a
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magnitude of 6.0 km and a direction of northeast, we can introduce a unit vector û that points to the northeast and say

succinctly that D→ AB = (6.0 km) û . Then the southwesterly direction is simply given by the unit vector − û . In this way,

the displacement of 6.0 km in the southwesterly direction is expressed by the vector

D→ BA = (−6.0 km) û .

Example 2.1

A Ladybug Walker

A long measuring stick rests against a wall in a physics laboratory with its 200-cm end at the floor. A ladybug
lands on the 100-cm mark and crawls randomly along the stick. It first walks 15 cm toward the floor, then it walks
56 cm toward the wall, then it walks 3 cm toward the floor again. Then, after a brief stop, it continues for 25 cm
toward the floor and then, again, it crawls up 19 cm toward the wall before coming to a complete rest (Figure
2.8). Find the vector of its total displacement and its final resting position on the stick.

Strategy

If we choose the direction along the stick toward the floor as the direction of unit vector û , then the direction

toward the floor is + û and the direction toward the wall is − û . The ladybug makes a total of five

displacements:

D→ 1 = (15 cm)( + û ),

D→ 2 = (56 cm)(− û ),

D→ 3 = (3 cm)( + û ),

D→ 4 = (25 cm)( + û ), and

D→ 5 = (19 cm)(− û ).

The total displacement D→ is the resultant of all its displacement vectors.

Figure 2.8 Five displacements of the ladybug. Note that in this schematic drawing,
magnitudes of displacements are not drawn to scale. (credit: modification of work by
“Persian Poet Gal”/Wikimedia Commons)
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2.2

Solution

The resultant of all the displacement vectors is

D→ = D→ 1 + D→ 2 + D→ 3 + D→ 4 + D→ 5

= (15 cm)( + û ) + (56 cm)(− û ) + (3 cm)( + û ) + (25 cm)( + û ) + (19 cm)(− û )

= (15 − 56 + 3 + 25 − 19)cm û

= −32 cm û .

In this calculation, we use the distributive law given by Equation 2.9. The result reads that the total
displacement vector points away from the 100-cm mark (initial landing site) toward the end of the meter stick
that touches the wall. The end that touches the wall is marked 0 cm, so the final position of the ladybug is at the
(100 – 32)cm = 68-cm mark.

Check Your Understanding A cave diver enters a long underwater tunnel. When her displacement with
respect to the entry point is 20 m, she accidentally drops her camera, but she doesn’t notice it missing until she
is some 6 m farther into the tunnel. She swims back 10 m but cannot find the camera, so she decides to end the
dive. How far from the entry point is she? Taking the positive direction out of the tunnel, what is her
displacement vector relative to the entry point?

Algebra of Vectors in Two Dimensions
When vectors lie in a plane—that is, when they are in two dimensions—they can be multiplied by scalars, added to other
vectors, or subtracted from other vectors in accordance with the general laws expressed by Equation 2.1, Equation 2.2,
Equation 2.7, and Equation 2.8. However, the addition rule for two vectors in a plane becomes more complicated than
the rule for vector addition in one dimension. We have to use the laws of geometry to construct resultant vectors, followed
by trigonometry to find vector magnitudes and directions. This geometric approach is commonly used in navigation
(Figure 2.9). In this section, we need to have at hand two rulers, a triangle, a protractor, a pencil, and an eraser for drawing
vectors to scale by geometric constructions.

Figure 2.9 In navigation, the laws of geometry are used to draw resultant displacements on
nautical maps.
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For a geometric construction of the sum of two vectors in a plane, we follow the parallelogram rule. Suppose two vectors

A
→

and B→ are at the arbitrary positions shown in Figure 2.10. Translate either one of them in parallel to the beginning

of the other vector, so that after the translation, both vectors have their origins at the same point. Now, at the end of vector

A
→

we draw a line parallel to vector B→ and at the end of vector B→ we draw a line parallel to vector A
→

(the dashed

lines in Figure 2.10). In this way, we obtain a parallelogram. From the origin of the two vectors we draw a diagonal that is

the resultant R→ of the two vectors: R→ = A
→

+ B→ (Figure 2.10(a)). The other diagonal of this parallelogram is the

vector difference of the two vectors D→ = A
→

− B→ , as shown in Figure 2.10(b). Notice that the end of the difference

vector is placed at the end of vector A
→

.

Figure 2.10 The parallelogram rule for the addition of two vectors. Make the parallel translation of each vector to a point
where their origins (marked by the dot) coincide and construct a parallelogram with two sides on the vectors and the other

two sides (indicated by dashed lines) parallel to the vectors. (a) Draw the resultant vector R→ along the diagonal of the

parallelogram from the common point to the opposite corner. Length R of the resultant vector is not equal to the sum of the

magnitudes of the two vectors. (b) Draw the difference vector D→ = A
→

− B→ along the diagonal connecting the ends of

the vectors. Place the origin of vector D→ at the end of vector B→ and the end (arrowhead) of vector D→ at the end of

vector A
→

. Length D of the difference vector is not equal to the difference of magnitudes of the two vectors.

It follows from the parallelogram rule that neither the magnitude of the resultant vector nor the magnitude of the difference
vector can be expressed as a simple sum or difference of magnitudes A and B, because the length of a diagonal cannot be

expressed as a simple sum of side lengths. When using a geometric construction to find magnitudes | R→ | and | D→ | , we

have to use trigonometry laws for triangles, which may lead to complicated algebra. There are two ways to circumvent this
algebraic complexity. One way is to use the method of components, which we examine in the next section. The other way is
to draw the vectors to scale, as is done in navigation, and read approximate vector lengths and angles (directions) from the
graphs. In this section we examine the second approach.

If we need to add three or more vectors, we repeat the parallelogram rule for the pairs of vectors until we find the resultant
of all of the resultants. For three vectors, for example, we first find the resultant of vector 1 and vector 2, and then we
find the resultant of this resultant and vector 3. The order in which we select the pairs of vectors does not matter because
the operation of vector addition is commutative and associative (see Equation 2.7 and Equation 2.8). Before we state a
general rule that follows from repetitive applications of the parallelogram rule, let’s look at the following example.

Suppose you plan a vacation trip in Florida. Departing from Tallahassee, the state capital, you plan to visit your uncle
Joe in Jacksonville, see your cousin Vinny in Daytona Beach, stop for a little fun in Orlando, see a circus performance
in Tampa, and visit the University of Florida in Gainesville. Your route may be represented by five displacement vectors

A
→

, B→ , C
→

, D→ , and E→ , which are indicated by the red vectors in Figure 2.11. What is your total displacement

when you reach Gainesville? The total displacement is the vector sum of all five displacement vectors, which may be
found by using the parallelogram rule four times. Alternatively, recall that the displacement vector has its beginning at
the initial position (Tallahassee) and its end at the final position (Gainesville), so the total displacement vector can be
drawn directly as an arrow connecting Tallahassee with Gainesville (see the green vector in Figure 2.11). When we use

the parallelogram rule four times, the resultant R→ we obtain is exactly this green vector connecting Tallahassee with

Gainesville: R→ = A
→

+ B→ + C
→

+ D→ + E→ .
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Figure 2.11 When we use the parallelogram rule four times, we obtain the resultant vector

R→ = A
→

+ B→ + C
→

+ D→ + E→ , which is the green vector connecting Tallahassee with Gainesville.

Drawing the resultant vector of many vectors can be generalized by using the following tail-to-head geometric

construction. Suppose we want to draw the resultant vector R→ of four vectors A
→

, B→ , C
→

, and D→ (Figure

2.12(a)). We select any one of the vectors as the first vector and make a parallel translation of a second vector to a position
where the origin (“tail”) of the second vector coincides with the end (“head”) of the first vector. Then, we select a third
vector and make a parallel translation of the third vector to a position where the origin of the third vector coincides with
the end of the second vector. We repeat this procedure until all the vectors are in a head-to-tail arrangement like the one

shown in Figure 2.12. We draw the resultant vector R→ by connecting the origin (“tail”) of the first vector with the end

(“head”) of the last vector. The end of the resultant vector is at the end of the last vector. Because the addition of vectors is
associative and commutative, we obtain the same resultant vector regardless of which vector we choose to be first, second,
third, or fourth in this construction.
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Figure 2.12 Tail-to-head method for drawing the resultant vector

R→ = A
→

+ B→ + C
→

+ D→ . (a) Four vectors of different magnitudes and

directions. (b) Vectors in (a) are translated to new positions where the origin (“tail”) of
one vector is at the end (“head”) of another vector. The resultant vector is drawn from
the origin (“tail”) of the first vector to the end (“head”) of the last vector in this
arrangement.

Example 2.2

Geometric Construction of the Resultant

The three displacement vectors A
→

, B→ , and C
→

in Figure 2.13 are specified by their magnitudes A = 10.0,

B = 7.0, and C = 8.0, respectively, and by their respective direction angles with the horizontal direction α = 35° ,

β = −110° , and γ = 30° . The physical units of the magnitudes are centimeters. Choose a convenient scale and

use a ruler and a protractor to find the following vector sums: (a) R→ = A
→

+ B→ , (b) D→ = A
→

− B→ , and

(c) S
→

= A
→

− 3 B→ + C
→

.

Figure 2.13 Vectors used in Example 2.2 and in the Check Your Understanding feature that follows.

Strategy

In geometric construction, to find a vector means to find its magnitude and its direction angle with the horizontal
direction. The strategy is to draw to scale the vectors that appear on the right-hand side of the equation and
construct the resultant vector. Then, use a ruler and a protractor to read the magnitude of the resultant and the
direction angle. For parts (a) and (b) we use the parallelogram rule. For (c) we use the tail-to-head method.

Solution

For parts (a) and (b), we attach the origin of vector B→ to the origin of vector A
→

, as shown in Figure 2.14,

and construct a parallelogram. The shorter diagonal of this parallelogram is the sum A
→

+ B→ . The longer of
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the diagonals is the difference A
→

− B→ . We use a ruler to measure the lengths of the diagonals, and a protractor

to measure the angles with the horizontal. For the resultant R→ , we obtain R = 5.8 cm and θR ≈ 0° . For the

difference D→ , we obtain D = 16.2 cm and θD = 49.3° , which are shown in Figure 2.14.

Figure 2.14 Using the parallelogram rule to solve (a) (finding the resultant, red) and (b) (finding
the difference, blue).

For (c), we can start with vector −3 B→ and draw the remaining vectors tail-to-head as shown in Figure 2.15.

In vector addition, the order in which we draw the vectors is unimportant, but drawing the vectors to scale is very

important. Next, we draw vector S
→

from the origin of the first vector to the end of the last vector and place the

arrowhead at the end of S
→

. We use a ruler to measure the length of S
→

, and find that its magnitude is

S = 36.9 cm. We use a protractor and find that its direction angle is θS = 52.9° . This solution is shown in Figure

2.15.

Figure 2.15 Using the tail-to-head method to solve (c)

(finding vector S
→

, green).
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2.3 Check Your Understanding Using the three displacement vectors A
→

, B→ , and F→ in Figure

2.13, choose a convenient scale, and use a ruler and a protractor to find vector G
→

given by the vector

equation G
→

= A
→

+ 2 B→ − F→ .

Observe the addition of vectors in a plane by visiting this vector calculator (https://openstaxcollege.org/l/
21compveccalc) and this Phet simulation (https://openstaxcollege.org/l/21phetvecaddsim) .

2.2 | Coordinate Systems and Components of a Vector

Learning Objectives

By the end of this section, you will be able to:

• Describe vectors in two and three dimensions in terms of their components, using unit vectors
along the axes.

• Distinguish between the vector components of a vector and the scalar components of a vector.

• Explain how the magnitude of a vector is defined in terms of the components of a vector.

• Identify the direction angle of a vector in a plane.

• Explain the connection between polar coordinates and Cartesian coordinates in a plane.

Vectors are usually described in terms of their components in a coordinate system. Even in everyday life we naturally invoke
the concept of orthogonal projections in a rectangular coordinate system. For example, if you ask someone for directions to
a particular location, you will more likely be told to go 40 km east and 30 km north than 50 km in the direction 37° north

of east.

In a rectangular (Cartesian) xy-coordinate system in a plane, a point in a plane is described by a pair of coordinates (x, y).

In a similar fashion, a vector A
→

in a plane is described by a pair of its vector coordinates. The x-coordinate of vector

A
→

is called its x-component and the y-coordinate of vector A
→

is called its y-component. The vector x-component is

a vector denoted by A
→

x . The vector y-component is a vector denoted by A
→

y . In the Cartesian system, the x and y

vector components of a vector are the orthogonal projections of this vector onto the x- and y-axes, respectively. In this way,
following the parallelogram rule for vector addition, each vector on a Cartesian plane can be expressed as the vector sum of
its vector components:

(2.10)A
→

= A
→

x + A
→

y.

As illustrated in Figure 2.16, vector A
→

is the diagonal of the rectangle where the x-component A
→

x is the side parallel

to the x-axis and the y-component A
→

y is the side parallel to the y-axis. Vector component A
→

x is orthogonal to vector

component A
→

y .
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Figure 2.16 Vector A
→

in a plane in the Cartesian coordinate

system is the vector sum of its vector x- and y-components. The

x-vector component A
→

x is the orthogonal projection of vector

A
→

onto the x-axis. The y-vector component A
→

y is the

orthogonal projection of vector A
→

onto the y-axis. The numbers

Ax and Ay that multiply the unit vectors are the scalar components

of the vector.

It is customary to denote the positive direction on the x-axis by the unit vector i
^

and the positive direction on the y-axis

by the unit vector j
^

. Unit vectors of the axes, i
^

and j
^

, define two orthogonal directions in the plane. As shown in

Figure 2.16, the x- and y- components of a vector can now be written in terms of the unit vectors of the axes:

(2.11)⎧

⎩
⎨ A

→
x = Ax i

^

A
→

y = Ay j
^

.

The vectors A
→

x and A
→

y defined by Equation 2.11 are the vector components of vector A
→

. The numbers Ax and

Ay that define the vector components in Equation 2.11 are the scalar components of vector A
→

. Combining Equation

2.10 with Equation 2.11, we obtain the component form of a vector:

(2.12)A
→

= Ax i
^

+ Ay j
^

.

If we know the coordinates b(xb, yb) of the origin point of a vector (where b stands for “beginning”) and the coordinates

e(xe, ye) of the end point of a vector (where e stands for “end”), we can obtain the scalar components of a vector simply

by subtracting the origin point coordinates from the end point coordinates:

(2.13)⎧

⎩
⎨

Ax = xe − xb
Ay = ye − yb.
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Example 2.3

Displacement of a Mouse Pointer

A mouse pointer on the display monitor of a computer at its initial position is at point (6.0 cm, 1.6 cm) with
respect to the lower left-side corner. If you move the pointer to an icon located at point (2.0 cm, 4.5 cm), what is
the displacement vector of the pointer?

Strategy

The origin of the xy-coordinate system is the lower left-side corner of the computer monitor. Therefore, the unit

vector i
^

on the x-axis points horizontally to the right and the unit vector j
^

on the y-axis points vertically

upward. The origin of the displacement vector is located at point b(6.0, 1.6) and the end of the displacement vector
is located at point e(2.0, 4.5). Substitute the coordinates of these points into Equation 2.13 to find the scalar

components Dx and Dy of the displacement vector D→ . Finally, substitute the coordinates into Equation

2.12 to write the displacement vector in the vector component form.

Solution

We identify xb = 6.0 , xe = 2.0 , yb = 1.6 , and ye = 4.5 , where the physical unit is 1 cm. The scalar x- and

y-components of the displacement vector are

Dx = xe − xb = (2.0 − 6.0)cm = −4.0 cm,
Dy = ye − yb = (4.5 − 1.6)cm = + 2.9 cm.

The vector component form of the displacement vector is

(2.14)D→ = Dx i
^

+ Dy j
^

= (−4.0 cm) i
^

+ (2.9 cm) j
^

= (−4.0 i
^

+ 2.9 j
^

)cm.

This solution is shown in Figure 2.17.

Figure 2.17 The graph of the displacement vector. The vector points from
the origin point at b to the end point at e.

Significance

Notice that the physical unit—here, 1 cm—can be placed either with each component immediately before the unit
vector or globally for both components, as in Equation 2.14. Often, the latter way is more convenient because
it is simpler.
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The vector x-component D→ x = −4.0 i
^

= 4.0(− i
^

) of the displacement vector has the magnitude

| D→ x| = | − 4.0|| i
^ | = 4.0 because the magnitude of the unit vector is | i

^ | = 1 . Notice, too, that the direction

of the x-component is − i
^

, which is antiparallel to the direction of the +x-axis; hence, the x-component vector

D→ x points to the left, as shown in Figure 2.17. The scalar x-component of vector D→ is Dx = −4.0 .

Similarly, the vector y-component D→ y = + 2.9 j
^

of the displacement vector has magnitude

| D→ y| = |2.9|| j
^ | = 2.9 because the magnitude of the unit vector is | j

^ | = 1 . The direction of the y-component

is + j
^

, which is parallel to the direction of the +y-axis. Therefore, the y-component vector D→ y points up, as

seen in Figure 2.17. The scalar y-component of vector D→ is Dy = + 2.9 . The displacement vector D→ is

the resultant of its two vector components.

The vector component form of the displacement vector Equation 2.14 tells us that the mouse pointer has been
moved on the monitor 4.0 cm to the left and 2.9 cm upward from its initial position.

Check Your Understanding A blue fly lands on a sheet of graph paper at a point located 10.0 cm to the
right of its left edge and 8.0 cm above its bottom edge and walks slowly to a point located 5.0 cm from the left
edge and 5.0 cm from the bottom edge. Choose the rectangular coordinate system with the origin at the lower
left-side corner of the paper and find the displacement vector of the fly. Illustrate your solution by graphing.

When we know the scalar components Ax and Ay of a vector A
→

, we can find its magnitude A and its direction angle

θA . The direction angle—or direction, for short—is the angle the vector forms with the positive direction on the x-axis.

The angle θA is measured in the counterclockwise direction from the +x-axis to the vector (Figure 2.18). Because the

lengths A, Ax , and Ay form a right triangle, they are related by the Pythagorean theorem:

(2.15)A2 = Ax
2 + Ay

2 ⇔ A = Ax
2 + Ay

2.

This equation works even if the scalar components of a vector are negative. The direction angle θA of a vector is defined

via the tangent function of angle θA in the triangle shown in Figure 2.18:

(2.16)
tan θA =

Ay
Ax

⇒ θA = tan−1 ⎛
⎝

Ay
Ax

⎞
⎠.
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Figure 2.18 For vector A
→

, its magnitude A and its direction

angle θA are related to the magnitudes of its scalar components

because A, Ax , and Ay form a right triangle.

When the vector lies either in the first quadrant or in the fourth quadrant, where component Ax is positive (Figure 2.19),

the angle θ in Equation 2.16) is identical to the direction angle θA . For vectors in the fourth quadrant, angle θ is

negative, which means that for these vectors, direction angle θA is measured clockwise from the positive x-axis. Similarly,

for vectors in the second quadrant, angle θ is negative. When the vector lies in either the second or third quadrant, where

component Ax is negative, the direction angle is θA = θ + 180° (Figure 2.19).

Figure 2.19 Scalar components of a vector may be positive or negative.
Vectors in the first quadrant (I)have both scalar components positive and
vectors in the third quadrant have both scalar components negative. For
vectors in quadrants II and III, the direction angle of a vector is
θA = θ + 180° .
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Example 2.4

Magnitude and Direction of the Displacement Vector

You move a mouse pointer on the display monitor from its initial position at point (6.0 cm, 1.6 cm) to an icon
located at point (2.0 cm, 4.5 cm). What is the magnitude and direction of the displacement vector of the pointer?

Strategy

In Example 2.3, we found the displacement vector D→ of the mouse pointer (see Equation 2.14). We identify

its scalar components Dx = −4.0 cm and Dy = + 2.9 cm and substitute into Equation 2.15 and Equation

2.16 to find the magnitude D and direction θD , respectively.

Solution

The magnitude of vector D→ is

D = Dx
2 + Dy

2 = (−4.0 cm)2 + (2.9 cm)2 = (4.0)2 + (2.9)2 cm = 4.9 cm.

The direction angle is

tan θ =
Dy
Dx

= +2.9 cm
−4.0 cm = −0.725 ⇒ θ = tan−1 (−0.725) = −35.9°.

Vector D→ lies in the second quadrant, so its direction angle is

θD = θ + 180° = −35.9° + 180° = 144.1°.

Check Your Understanding If the displacement vector of a blue fly walking on a sheet of graph paper is

D→ = (−5.00 i
^

− 3.00 j
^

)cm , find its magnitude and direction.

In many applications, the magnitudes and directions of vector quantities are known and we need to find the resultant of
many vectors. For example, imagine 400 cars moving on the Golden Gate Bridge in San Francisco in a strong wind. Each
car gives the bridge a different push in various directions and we would like to know how big the resultant push can possibly
be. We have already gained some experience with the geometric construction of vector sums, so we know the task of finding
the resultant by drawing the vectors and measuring their lengths and angles may become intractable pretty quickly, leading
to huge errors. Worries like this do not appear when we use analytical methods. The very first step in an analytical approach
is to find vector components when the direction and magnitude of a vector are known.

Let us return to the right triangle in Figure 2.18. The quotient of the adjacent side Ax to the hypotenuse A is the cosine

function of direction angle θA , Ax/A = cos θA , and the quotient of the opposite side Ay to the hypotenuse A is the sine

function of θA , Ay/A = sin θA . When magnitude A and direction θA are known, we can solve these relations for the

scalar components:

(2.17)⎧

⎩
⎨

Ax = A cos θA
Ay = A sin θA

.

When calculating vector components with Equation 2.17, care must be taken with the angle. The direction angle θA

of a vector is the angle measured counterclockwise from the positive direction on the x-axis to the vector. The clockwise
measurement gives a negative angle.
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Example 2.5

Components of Displacement Vectors

A rescue party for a missing child follows a search dog named Trooper. Trooper wanders a lot and makes many
trial sniffs along many different paths. Trooper eventually finds the child and the story has a happy ending, but his
displacements on various legs seem to be truly convoluted. On one of the legs he walks 200.0 m southeast, then
he runs north some 300.0 m. On the third leg, he examines the scents carefully for 50.0 m in the direction 30°
west of north. On the fourth leg, Trooper goes directly south for 80.0 m, picks up a fresh scent and turns 23°
west of south for 150.0 m. Find the scalar components of Trooper’s displacement vectors and his displacement
vectors in vector component form for each leg.

Strategy

Let’s adopt a rectangular coordinate system with the positive x-axis in the direction of geographic east, with the

positive y-direction pointed to geographic north. Explicitly, the unit vector i
^

of the x-axis points east and the

unit vector j
^

of the y-axis points north. Trooper makes five legs, so there are five displacement vectors. We start

by identifying their magnitudes and direction angles, then we use Equation 2.17 to find the scalar components
of the displacements and Equation 2.12 for the displacement vectors.

Solution

On the first leg, the displacement magnitude is L1 = 200.0 m and the direction is southeast. For direction

angle θ1 we can take either 45° measured clockwise from the east direction or 45° + 270° measured

counterclockwise from the east direction. With the first choice, θ1 = −45° . With the second choice,

θ1 = + 315° . We can use either one of these two angles. The components are

L1x = L1 cos θ1 = (200.0 m) cos 315° = 141.4 m,
L1y = L1 sin θ1 = (200.0 m) sin 315° = −141.4 m.

The displacement vector of the first leg is

L→ 1 = L1x i
^

+ L1y j
^

= (141.4 i
^

− 141.4 j
^

) m.

On the second leg of Trooper’s wanderings, the magnitude of the displacement is L2 = 300.0 m and the

direction is north. The direction angle is θ2 = + 90° . We obtain the following results:

L2x = L2 cos θ2 = (300.0 m) cos 90° = 0.0 ,
L2y = L2 sin θ2 = (300.0 m) sin 90° = 300.0 m,

L→ 2 = L2x i
^

+ L2y j
^

= (300.0 m) j
^

.

On the third leg, the displacement magnitude is L3 = 50.0 m and the direction is 30° west of north. The

direction angle measured counterclockwise from the eastern direction is θ3 = 30° + 90° = + 120° . This gives

the following answers:

L3x = L3 cos θ3 = (50.0 m) cos 120° = −25.0 m,
L3y = L3 sin θ3 = (50.0 m) sin 120° = + 43.3 m,

L→ 3 = L3x i
^

+ L3y j
^

= (−25.0 i
^

+ 43.3 j
^

)m.

On the fourth leg of the excursion, the displacement magnitude is L4 = 80.0 m and the direction is south. The

direction angle can be taken as either θ4 = −90° or θ4 = + 270° . We obtain
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L4x = L4 cos θ4 = (80.0 m) cos (−90°) = 0 ,
L4y = L4 sin θ4 = (80.0 m) sin (−90°) = −80.0 m,

L
→

4 = L4x i
^

+ L4y j
^

= (−80.0 m) j
^

.

On the last leg, the magnitude is L5 = 150.0 m and the angle is θ5 = −23° + 270° = + 247° (23° west of

south), which gives

L5x = L5 cos θ5 = (150.0 m) cos 247° = −58.6 m,
L5y = L5 sin θ5 = (150.0 m) sin 247° = −138.1 m,

L
→

5 = L5x i
^

+ L5y j
^

= (−58.6 i
^

− 138.1 j
^

)m.

Check Your Understanding If Trooper runs 20 m west before taking a rest, what is his displacement
vector?

Polar Coordinates
To describe locations of points or vectors in a plane, we need two orthogonal directions. In the Cartesian coordinate system

these directions are given by unit vectors i
^

and j
^

along the x-axis and the y-axis, respectively. The Cartesian coordinate

system is very convenient to use in describing displacements and velocities of objects and the forces acting on them.
However, it becomes cumbersome when we need to describe the rotation of objects. When describing rotation, we usually
work in the polar coordinate system.

In the polar coordinate system, the location of point P in a plane is given by two polar coordinates (Figure 2.20). The first
polar coordinate is the radial coordinate r, which is the distance of point P from the origin. The second polar coordinate is
an angle φ that the radial vector makes with some chosen direction, usually the positive x-direction. In polar coordinates,

angles are measured in radians, or rads. The radial vector is attached at the origin and points away from the origin to point

P. This radial direction is described by a unit radial vector r̂ . The second unit vector t̂ is a vector orthogonal to the

radial direction r̂ . The positive + t̂ direction indicates how the angle φ changes in the counterclockwise direction. In

this way, a point P that has coordinates (x, y) in the rectangular system can be described equivalently in the polar coordinate
system by the two polar coordinates (r, φ) . Equation 2.17 is valid for any vector, so we can use it to express the x-

and y-coordinates of vector r→ . In this way, we obtain the connection between the polar coordinates and rectangular

coordinates of point P:

(2.18)⎧

⎩
⎨
x = r cos φ
y = r sin φ .
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Figure 2.20 Using polar coordinates, the unit vector r̂ defines

the positive direction along the radius r (radial direction) and,

orthogonal to it, the unit vector t̂ defines the positive direction of

rotation by the angle φ .

Example 2.6

Polar Coordinates

A treasure hunter finds one silver coin at a location 20.0 m away from a dry well in the direction 20° north of

east and finds one gold coin at a location 10.0 m away from the well in the direction 20° north of west. What are

the polar and rectangular coordinates of these findings with respect to the well?

Strategy

The well marks the origin of the coordinate system and east is the +x-direction. We identify radial distances from
the locations to the origin, which are rS = 20.0 m (for the silver coin) and rG = 10.0 m (for the gold coin). To

find the angular coordinates, we convert 20° to radians: 20° = π20/180 = π/9 . We use Equation 2.18 to find

the x- and y-coordinates of the coins.

Solution

The angular coordinate of the silver coin is φS = π/9 , whereas the angular coordinate of the gold coin is

φG = π − π/9 = 8π/9 . Hence, the polar coordinates of the silver coin are (rS, φS) = (20.0 m, π/9) and those

of the gold coin are (rG, φG) = (10.0 m, 8π/9) . We substitute these coordinates into Equation 2.18 to obtain

rectangular coordinates. For the gold coin, the coordinates are

⎧

⎩
⎨

xG = rG cos φG = (10.0 m) cos 8π/9 = −9.4 m
yG = rG sin φG = (10.0 m) sin 8π/9 = 3.4 m

⇒ (xG, yG) = (−9.4 m, 3.4 m).

For the silver coin, the coordinates are

⎧

⎩
⎨

xS = rS cos φS = (20.0 m) cos π/9 = 18.9 m
yS = rS sin φS = (20.0 m) sin π/9 = 6.8 m

⇒ (xS, yS) = (18.9 m, 6.8 m).

Vectors in Three Dimensions
To specify the location of a point in space, we need three coordinates (x, y, z), where coordinates x and y specify locations in
a plane, and coordinate z gives a vertical positions above or below the plane. Three-dimensional space has three orthogonal
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directions, so we need not two but three unit vectors to define a three-dimensional coordinate system. In the Cartesian

coordinate system, the first two unit vectors are the unit vector of the x-axis i
^

and the unit vector of the y-axis j
^

. The

third unit vector k̂ is the direction of the z-axis (Figure 2.21). The order in which the axes are labeled, which is the

order in which the three unit vectors appear, is important because it defines the orientation of the coordinate system. The

order x-y-z, which is equivalent to the order i
^

- j
^

- k̂ , defines the standard right-handed coordinate system (positive

orientation).

Figure 2.21 Three unit vectors define a Cartesian system in
three-dimensional space. The order in which these unit vectors
appear defines the orientation of the coordinate system. The
order shown here defines the right-handed orientation.

In three-dimensional space, vector A
→

has three vector components: the x-component A
→

x = Ax i
^

, which is the part

of vector A
→

along the x-axis; the y-component A
→

y = Ay j
^

, which is the part of A
→

along the y-axis; and the

z-component A
→

z = Az k̂ , which is the part of the vector along the z-axis. A vector in three-dimensional space is the

vector sum of its three vector components (Figure 2.22):

(2.19)A
→

= Ax i
^

+ Ay j
^

+ Az k̂ .

If we know the coordinates of its origin b(xb, yb, zb) and of its end e(xe, ye, ze) , its scalar components are obtained by

taking their differences: Ax and Ay are given by Equation 2.13 and the z-component is given by

(2.20)Az = ze − zb.

Magnitude A is obtained by generalizing Equation 2.15 to three dimensions:
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(2.21)A = Ax
2 + Ay

2 + Az
2.

This expression for the vector magnitude comes from applying the Pythagorean theorem twice. As seen in Figure 2.22,

the diagonal in the xy-plane has length Ax
2 + Ay

2 and its square adds to the square Az
2 to give A2 . Note that when the

z-component is zero, the vector lies entirely in the xy-plane and its description is reduced to two dimensions.

Figure 2.22 A vector in three-dimensional space is the vector
sum of its three vector components.

Example 2.7

Takeoff of a Drone

During a takeoff of IAI Heron (Figure 2.23), its position with respect to a control tower is 100 m above the
ground, 300 m to the east, and 200 m to the north. One minute later, its position is 250 m above the ground, 1200
m to the east, and 2100 m to the north. What is the drone’s displacement vector with respect to the control tower?
What is the magnitude of its displacement vector?

Figure 2.23 The drone IAI Heron in flight. (credit: SSgt
Reynaldo Ramon, USAF)

Strategy

We take the origin of the Cartesian coordinate system as the control tower. The direction of the +x-axis is given
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by unit vector i
^

to the east, the direction of the +y-axis is given by unit vector j
^

to the north, and the direction

of the +z-axis is given by unit vector k̂ , which points up from the ground. The drone’s first position is the origin

(or, equivalently, the beginning) of the displacement vector and its second position is the end of the displacement
vector.

Solution

We identify b(300.0 m, 200.0 m, 100.0 m) and e(480.0 m, 370.0 m, 250.0m), and use Equation 2.13 and
Equation 2.20 to find the scalar components of the drone’s displacement vector:

⎧

⎩
⎨

Dx = xe − xb = 1200.0 m − 300.0 m = 900.0 m,
Dy = ye − yb = 2100.0 m − 200.0 m = 1900.0 m,
Dz = ze − zb = 250.0 m − 100.0 m = 150.0 m.

We substitute these components into Equation 2.19 to find the displacement vector:

D→ = Dx i
^

+ Dy j
^

+ Dz k̂ = 900.0 m i
^

+ 1900.0 m j
^

+ 150.0 m k̂ = (0.90 i
^

+ 1.90 j
^

+ 0.15 k̂ ) km.

We substitute into Equation 2.21 to find the magnitude of the displacement”

D = Dx
2 + Dy

2 + Dz
2 = (0.90 km)2 + (1.90 km)2 + (0.15 km)2 = 4.44 km.

Check Your Understanding If the average velocity vector of the drone in the displacement in Example

2.7 is u→ = (15.0 i
^

+ 31.7 j
^

+ 2.5 k̂ )m/s , what is the magnitude of the drone’s velocity vector?

2.3 | Algebra of Vectors

Learning Objectives

By the end of this section, you will be able to:

• Apply analytical methods of vector algebra to find resultant vectors and to solve vector
equations for unknown vectors.

• Interpret physical situations in terms of vector expressions.

Vectors can be added together and multiplied by scalars. Vector addition is associative (Equation 2.8) and commutative
(Equation 2.7), and vector multiplication by a sum of scalars is distributive (Equation 2.9). Also, scalar multiplication
by a sum of vectors is distributive:

(2.22)α( A
→

+ B→ ) = α A
→

+ α B→ .

In this equation, α is any number (a scalar). For example, a vector antiparallel to vector A
→

= Ax i
^

+ Ay j
^

+ Az k̂ can

be expressed simply by multiplying A
→

by the scalar α = −1 :

(2.23)
− A

→
= −Ax i

^
− Ay j

^
− Az k̂ .
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Example 2.8

Direction of Motion

In a Cartesian coordinate system where i
^

denotes geographic east, j
^

denotes geographic north, and k̂
denotes altitude above sea level, a military convoy advances its position through unknown territory with velocity

v→ = (4.0 i
^

+ 3.0 j
^

+ 0.1 k̂ )km/h . If the convoy had to retreat, in what geographic direction would it be

moving?

Solution

The velocity vector has the third component v→ z = ( + 0.1km/h) k̂ , which says the convoy is climbing at a rate

of 100 m/h through mountainous terrain. At the same time, its velocity is 4.0 km/h to the east and 3.0 km/h to

the north, so it moves on the ground in direction tan−1(3 /4) ≈ 37° north of east. If the convoy had to retreat,

its new velocity vector u→ would have to be antiparallel to v→ and be in the form u→ = −α v→ , where

α is a positive number. Thus, the velocity of the retreat would be u→ = α(−4.0 i
^

− 3.0 j
^

− 0.1 k̂ )km/h . The

negative sign of the third component indicates the convoy would be descending. The direction angle of the retreat

velocity is tan−1(−3α/ − 4α) ≈ 37° south of west. Therefore, the convoy would be moving on the ground in

direction 37° south of west while descending on its way back.

The generalization of the number zero to vector algebra is called the null vector, denoted by 0
→

. All components of the

null vector are zero, 0
→

= 0 i
^

+ 0 j
^

+ 0 k̂ , so the null vector has no length and no direction.

Two vectors A
→

and B→ are equal vectors if and only if their difference is the null vector:

0
→

= A
→

− B→ = (Ax i
^

+ Ay j
^

+ Az k̂ ) − (Bx i
^

+ By j
^

+ Bz k̂ ) = (Ax − Bx) i
^

+ (Ay − By) j
^

+ (Az − Bz) k̂ .

This vector equation means we must have simultaneously Ax − Bx = 0 , Ay − By = 0 , and Az − Bz = 0 . Hence, we can

write A
→

= B→ if and only if the corresponding components of vectors A
→

and B→ are equal:

(2.24)

A
→

= B→ ⇔
⎧

⎩
⎨

Ax = Bx
Ay = By

Az = Bz

.

Two vectors are equal when their corresponding scalar components are equal.

Resolving vectors into their scalar components (i.e., finding their scalar components) and expressing them analytically in
vector component form (given by Equation 2.19) allows us to use vector algebra to find sums or differences of many

vectors analytically (i.e., without using graphical methods). For example, to find the resultant of two vectors A
→

and B→

, we simply add them component by component, as follows:

R→ = A
→

+ B→ = (Ax i
^

+ Ay j
^

+ Az k̂ ) + (Bx i
^

+ By j
^

+ Bz k̂ ) = (Ax + Bx) i
^

+ (Ay + By) j
^

+ (Az + Bz) k̂ .

In this way, using Equation 2.24, scalar components of the resultant vector R→ = Rx i
^

+ Ry j
^

+ Rz k̂ are the sums of

corresponding scalar components of vectors A
→

and B→ :
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⎧

⎩
⎨

Rx = Ax + Bx,
Ry = Ay + By,
Rz = Az + Bz.

Analytical methods can be used to find components of a resultant of many vectors. For example, if we are to sum up

N vectors F→ 1, F→ 2, F→ 3, … , F→ N , where each vector is F→ k = Fkx i
^

+ Fky j
^

+ Fkz k̂ , the resultant vector

F→ R is

F→ R = F→ 1 + F→ 2 + F→ 3 + … + F→ N = ∑
k = 1

N
F→ k = ∑

k = 1

N ⎛
⎝Fkx i

^
+ Fky j

^
+ Fkz k̂⎞

⎠

=
⎛

⎝
⎜ ∑
k = 1

N
Fkx

⎞

⎠
⎟ i
^

+
⎛

⎝
⎜ ∑
k = 1

N
Fky

⎞

⎠
⎟ j
^

+
⎛

⎝
⎜ ∑
k = 1

N
Fkz

⎞

⎠
⎟k̂ .

Therefore, scalar components of the resultant vector are

(2.25)⎧

⎩

⎨
⎪
⎪
⎪

⎪
⎪
⎪

FRx = ∑
k = 1

N
Fkx = F1x + F2x + … + FNx

FRy = ∑
k = 1

N
Fky = F1y + F2y + … + FNy

FRz = ∑
k = 1

N
Fkz = F1z + F2z + … + FNz.

Having found the scalar components, we can write the resultant in vector component form:

F→ R = FRx i
^

+ FRy j
^

+ FRz k̂ .

Analytical methods for finding the resultant and, in general, for solving vector equations are very important in physics
because many physical quantities are vectors. For example, we use this method in kinematics to find resultant displacement
vectors and resultant velocity vectors, in mechanics to find resultant force vectors and the resultants of many derived vector
quantities, and in electricity and magnetism to find resultant electric or magnetic vector fields.

Example 2.9

Analytical Computation of a Resultant

Three displacement vectors A
→

, B→ , and C
→

in a plane (Figure 2.13) are specified by their magnitudes

A = 10.0, B = 7.0, and C = 8.0, respectively, and by their respective direction angles with the horizontal
direction α = 35°, β = −110° , and γ = 30° . The physical units of the magnitudes are centimeters. Resolve

the vectors to their scalar components and find the following vector sums: (a) R→ = A
→

+ B→ + C
→

, (b)

D→ = A
→

− B→ , and (c) S
→

= A
→

− 3 B→ + C
→

.

Strategy

First, we use Equation 2.17 to find the scalar components of each vector and then we express each vector in its
vector component form given by Equation 2.12. Then, we use analytical methods of vector algebra to find the
resultants.

Solution

We resolve the given vectors to their scalar components:
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⎧

⎩
⎨

Ax = A cos α = (10.0 cm) cos 35° = 8.19 cm
Ay = A sin α = (10.0 cm) sin 35° = 5.73 cm

⎧

⎩
⎨
Bx = B cos β = (7.0 cm) cos (−110°) = −2.39 cm
By = B sin β = (7.0 cm) sin (−110°) = −6.58 cm

⎧

⎩
⎨
Cx = C cos γ = (8.0 cm) cos 30° = 6.93 cm
Cy = C sin γ = (8.0 cm) sin 30° = 4.00 cm

.

For (a) we may substitute directly into Equation 2.24 to find the scalar components of the resultant:

⎧

⎩
⎨
Rx = Ax + Bx + Cx = 8.19 cm − 2.39 cm + 6.93 cm = 12.73 cm
Ry = Ay + By + Cy = 5.73 cm − 6.58 cm + 4.00 cm = 3.15 cm .

Therefore, the resultant vector is R→ = Rx i
^

+ Ry j
^

= (12.7 i
^

+ 3.1 j
^

)cm .

For (b), we may want to write the vector difference as

D→ = A
→

− B→ = (Ax i
^

+ Ay j
^

) − (Bx i
^

+ By j
^

) = (Ax − Bx) i
^

+ (Ay − By) j
^

.

Then, the scalar components of the vector difference are

⎧

⎩
⎨
Dx = Ax − Bx = 8.19 cm − (−2.39 cm) = 10.58 cm
Dy = Ay − By = 5.73 cm − (−6.58 cm) = 12.31 cm.

Hence, the difference vector is D→ = Dx i
^

+ Dy j
^

= (10.6 i
^

+ 12.3 j
^

)cm .

For (c), we can write vector S
→

in the following explicit form:

S
→

= A
→

− 3 B→ + C
→

= (Ax i
^

+ Ay j
^

) − 3(Bx i
^

+ By j
^

) + (Cx i
^

+ Cy j
^

)

= (Ax − 3Bx + Cx) i
^

+ (Ay − 3By + Cy) j
^

.

Then, the scalar components of S
→

are

⎧

⎩
⎨
Sx = Ax − 3Bx + Cx = 8.19 cm − 3(−2.39 cm) + 6.93 cm = 22.29 cm
Sy = Ay − 3By + Cy = 5.73 cm − 3(−6.58 cm) + 4.00 cm = 29.47 cm.

The vector is S
→

= Sx i
^

+ Sy j
^

= (22.3 i
^

+ 29.5 j
^

)cm .

Significance

Having found the vector components, we can illustrate the vectors by graphing or we can compute magnitudes
and direction angles, as shown in Figure 2.24. Results for the magnitudes in (b) and (c) can be compared with
results for the same problems obtained with the graphical method, shown in Figure 2.14 and Figure 2.15.
Notice that the analytical method produces exact results and its accuracy is not limited by the resolution of a ruler
or a protractor, as it was with the graphical method used in Example 2.2 for finding this same resultant.
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Figure 2.24 Graphical illustration of the solutions obtained analytically in Example 2.9.

Check Your Understanding Three displacement vectors A
→

, B→ , and F→ (Figure 2.13) are

specified by their magnitudes A = 10.00, B = 7.00, and F = 20.00, respectively, and by their respective direction
angles with the horizontal direction α = 35° , β = −110° , and φ = 110° . The physical units of the

magnitudes are centimeters. Use the analytical method to find vector G
→

= A
→

+ 2 B→ − F→ . Verify that

G = 28.15 cm and that θG = −68.65° .

Example 2.10

The Tug-of-War Game

Four dogs named Ang, Bing, Chang, and Dong play a tug-of-war game with a toy (Figure 2.25). Ang pulls on
the toy in direction α = 55° south of east, Bing pulls in direction β = 60° east of north, and Chang pulls in

direction γ = 55° west of north. Ang pulls strongly with 160.0 units of force (N), which we abbreviate as A =

160.0 N. Bing pulls even stronger than Ang with a force of magnitude B = 200.0 N, and Chang pulls with a force
of magnitude C = 140.0 N. When Dong pulls on the toy in such a way that his force balances out the resultant of
the other three forces, the toy does not move in any direction. With how big a force and in what direction must
Dong pull on the toy for this to happen?

Figure 2.25 Four dogs play a tug-of-war game with a toy.

72 Chapter 2 | Vectors

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



2.9

Strategy

We assume that east is the direction of the positive x-axis and north is the direction of the positive y-axis. As

in Example 2.9, we have to resolve the three given forces— A
→

(the pull from Ang), B→ (the pull from

Bing), and C
→

(the pull from Chang)—into their scalar components and then find the scalar components of the

resultant vector R→ = A
→

+ B→ + C
→

. When the pulling force D→ from Dong balances out this resultant,

the sum of D→ and R→ must give the null vector D→ + R→ = 0
→

. This means that D→ = − R→ , so the

pull from Dong must be antiparallel to R→ .

Solution

The direction angles are θA = −α = −55° , θB = 90° − β = 30° , and θC = 90° + γ = 145° , and substituting

them into Equation 2.17 gives the scalar components of the three given forces:

⎧

⎩
⎨

Ax = A cos θA = (160.0 N) cos (−55°) = + 91.8 N
Ay = A sin θA = (160.0 N) sin (−55°) = −131.1 N

⎧

⎩
⎨
Bx = B cos θB = (200.0 N) cos 30° = + 173.2 N
By = B sin θB = (200.0 N) sin 30° = + 100.0 N

⎧

⎩
⎨
Cx = C cos θC = (140.0 N) cos 145° = −114.7 N
Cy = C sin θC = (140.0 N) sin 145° = + 80.3 N

.

Now we compute scalar components of the resultant vector R→ = A
→

+ B→ + C
→

:

⎧

⎩
⎨
Rx = Ax + Bx + Cx = + 91.8 N + 173.2 N − 114.7 N = + 150.3 N
Ry = Ay + By + Cy = −131.1 N + 100.0 N + 80.3 N = + 49.2 N .

The antiparallel vector to the resultant R→ is

D→ = − R→ = −Rx i
^

− Ry j
^

= (−150.3 i
^

− 49.2 j
^

) N.

The magnitude of Dong’s pulling force is

D = Dx
2 + Dy

2 = (−150.3)2 + (−49.2)2 N = 158.1 N.

The direction of Dong’s pulling force is

θ = tan−1 ⎛
⎝

Dy
Dx

⎞
⎠ = tan−1 ⎛

⎝
−49.2 N
−150.3 N

⎞
⎠ = tan−1 ⎛

⎝
49.2
150.3

⎞
⎠ = 18.1°.

Dong pulls in the direction 18.1° south of west because both components are negative, which means the pull

vector lies in the third quadrant (Figure 2.19).

Check Your Understanding Suppose that Bing in Example 2.10 leaves the game to attend to more
important matters, but Ang, Chang, and Dong continue playing. Ang and Chang’s pull on the toy does not
change, but Dong runs around and bites on the toy in a different place. With how big a force and in what
direction must Dong pull on the toy now to balance out the combined pulls from Chang and Ang? Illustrate this
situation by drawing a vector diagram indicating all forces involved.
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Example 2.11

Vector Algebra

Find the magnitude of the vector C
→

that satisfies the equation 2 A
→

− 6 B→ + 3 C
→

= 2 j
^

, where

A
→

= i
^

− 2 k̂ and B→ = − j
^

+ k̂ /2 .

Strategy

We first solve the given equation for the unknown vector C
→

. Then we substitute A
→

and B→ ; group the

terms along each of the three directions i
^

, j
^

, and k̂ ; and identify the scalar components Cx , Cy , and Cz .

Finally, we substitute into Equation 2.21 to find magnitude C.

Solution

2 A
→

− 6 B→ + 3 C
→

= 2 j
^

3 C
→

= 2 j
^

− 2 A
→

+ 6 B→

C
→

= 2
3 j

^
− 2

3 A
→

+ 2 B→

= 2
3 j

^
− 2

3( i
^

− 2 k̂ ) + 2
⎛

⎝
⎜− j

^
+ k̂

2
⎞

⎠
⎟ = 2

3 j
^

− 2
3 i

^
+ 4

3 k̂ − 2 j
^

+ k̂

= −2
3 i

^
+ ⎛

⎝
2
3 − 2⎞

⎠ j
^

+ ⎛
⎝
4
3 + 1⎞

⎠k̂

= −2
3 i

^
− 4

3 j
^

+ 7
3 k̂ .

The components are Cx = −2 /3 , Cy = −4/3 , and Cz = 7 /3 , and substituting into Equation 2.21 gives

C = Cx
2 + Cy

2 + Cz
2 = (−2/3)2 + (−4 /3)2 + (7 /3)2 = 23/3.

Example 2.12

Displacement of a Skier

Starting at a ski lodge, a cross-country skier goes 5.0 km north, then 3.0 km west, and finally 4.0 km southwest
before taking a rest. Find his total displacement vector relative to the lodge when he is at the rest point. How far
and in what direction must he ski from the rest point to return directly to the lodge?

Strategy

We assume a rectangular coordinate system with the origin at the ski lodge and with the unit vector i
^

pointing

east and the unit vector j
^

pointing north. There are three displacements: D→ 1 , D→ 2 , and D→ 3 . We

identify their magnitudes as D1 = 5.0 km , D2 = 3.0 km , and D3 = 4.0 km . We identify their directions are

the angles θ1 = 90° , θ2 = 180° , and θ3 = 180° + 45° = 225° . We resolve each displacement vector to its

scalar components and substitute the components into Equation 2.24 to obtain the scalar components of the

resultant displacement D→ from the lodge to the rest point. On the way back from the rest point to the lodge, the

displacement is B→ = − D→ . Finally, we find the magnitude and direction of B→ .

Solution

Scalar components of the displacement vectors are
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⎧

⎩
⎨

D1x = D1 cos θ1 = (5.0 km) cos 90° = 0
D1y = D1 sin θ1 = (5.0 km) sin 90° = 5.0 km

⎧

⎩
⎨

D2x = D2 cos θ2 = (3.0 km) cos 180° = −3.0 km
D2y = D2 sin θ2 = (3.0 km) sin 180° = 0

⎧

⎩
⎨

D3x = D3 cos θ3 = (4.0 km) cos 225° = −2.8 km
D3y = D3 sin θ3 = (4.0 km) sin 225° = −2.8 km

.

Scalar components of the net displacement vector are

⎧

⎩
⎨

Dx = D1x + D2x + D3x = (0 − 3.0 − 2.8)km = −5.8 km
Dy = D1y + D2y + D3y = (5.0 + 0 − 2.8)km = + 2.2 km.

Hence, the skier’s net displacement vector is D→ = Dx i
^

+ Dy j
^

= (−5.8 i
^

+ 2.2 j
^

)km . On the way back

to the lodge, his displacement is B→ = − D→ = −(−5.8 i
^

+ 2.2 j
^

)km = (5.8 i
^

− 2.2 j
^

)km . Its magnitude is

B = Bx
2 + By

2 = (5.8)2 + (−2.2)2 km = 6.2 km and its direction angle is θ = tan−1(−2.2/5.8) = −20.8° .

Therefore, to return to the lodge, he must go 6.2 km in a direction about 21° south of east.

Significance

Notice that no figure is needed to solve this problem by the analytical method. Figures are required when using a
graphical method; however, we can check if our solution makes sense by sketching it, which is a useful final step
in solving any vector problem.

Example 2.13

Displacement of a Jogger

A jogger runs up a flight of 200 identical steps to the top of a hill and then runs along the top of the hill 50.0 m
before he stops at a drinking fountain (Figure 2.26). His displacement vector from point A at the bottom of the

steps to point B at the fountain is D→ AB = (−90.0 i
^

+ 30.0 j
^

)m . What is the height and width of each step in

the flight? What is the actual distance the jogger covers? If he makes a loop and returns to point A, what is his net
displacement vector?

Figure 2.26 A jogger runs up a flight of steps.
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Strategy

The displacement vector D→ AB is the vector sum of the jogger’s displacement vector D→ AT along the stairs

(from point A at the bottom of the stairs to point T at the top of the stairs) and his displacement vector D→ TB on

the top of the hill (from point T at the top of the stairs to the fountain at point B). We must find the horizontal and

the vertical components of D→ TB . If each step has width w and height h, the horizontal component of D→ TB

must have a length of 200w and the vertical component must have a length of 200h. The actual distance the jogger
covers is the sum of the distance he runs up the stairs and the distance of 50.0 m that he runs along the top of the
hill.

Solution

In the coordinate system indicated in Figure 2.26, the jogger’s displacement vector on the top of the hill is

D→ TB = (−50.0 m) i
^

. His net displacement vector is

D→ AB = D→ AT + D→ TB.

Therefore, his displacement vector D→ TB along the stairs is

D→ AT = D→ AB − D→ TB = (−90.0 i
^

+ 30.0 j
^

)m − (−50.0 m) i
^

= [(−90.0 + 50.0) i
^

+ 30.0 j
^

)]m

= (−40.0 i
^

+ 30.0 j
^

)m.

Its scalar components are DATx = −40.0 m and DATy = 30.0 m . Therefore, we must have

200w = | − 40.0|m and 200h = 30.0 m.

Hence, the step width is w = 40.0 m/200 = 0.2 m = 20 cm, and the step height is w = 30.0 m/200 = 0.15 m = 15
cm. The distance that the jogger covers along the stairs is

DAT = DATx
2 + DATy

2 = (−40.0)2 + (30.0)2 m = 50.0 m.

Thus, the actual distance he runs is DAT + DTB = 50.0 m + 50.0 m = 100.0 m . When he makes a loop and

comes back from the fountain to his initial position at point A, the total distance he covers is twice this distance,
or 200.0 m. However, his net displacement vector is zero, because when his final position is the same as his initial
position, the scalar components of his net displacement vector are zero (Equation 2.13).

In many physical situations, we often need to know the direction of a vector. For example, we may want to know the
direction of a magnetic field vector at some point or the direction of motion of an object. We have already said direction is
given by a unit vector, which is a dimensionless entity—that is, it has no physical units associated with it. When the vector
in question lies along one of the axes in a Cartesian system of coordinates, the answer is simple, because then its unit vector
of direction is either parallel or antiparallel to the direction of the unit vector of an axis. For example, the direction of vector

d→ = −5 m i
^

is unit vector d̂ = − i
^

. The general rule of finding the unit vector V̂ of direction for any vector V→ is

to divide it by its magnitude V:

(2.26)
V̂ = V→

V .

We see from this expression that the unit vector of direction is indeed dimensionless because the numerator and the
denominator in Equation 2.26 have the same physical unit. In this way, Equation 2.26 allows us to express the unit
vector of direction in terms of unit vectors of the axes. The following example illustrates this principle.
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2.10

Example 2.14

The Unit Vector of Direction

If the velocity vector of the military convoy in Example 2.8 is v→ = (4.000 i
^

+ 3.000 j
^

+ 0.100 k̂ )km/h ,

what is the unit vector of its direction of motion?

Strategy

The unit vector of the convoy’s direction of motion is the unit vector v̂ that is parallel to the velocity vector. The

unit vector is obtained by dividing a vector by its magnitude, in accordance with Equation 2.26.

Solution

The magnitude of the vector v→ is

v = vx
2 + vy

2 + vz
2 = 4.0002 + 3.0002 + 0.1002km/h = 5.001km/h.

To obtain the unit vector v̂ , divide v→ by its magnitude:

v̂ = v→
v = (4.000 i

^
+ 3.000 j

^
+ 0.100 k̂ )km/h

5.001km/h

= (4.000 i
^

+ 3.000 j
^

+ 0.100 k̂ )
5.001

= 4.000
5.001 i

^
+ 3.000

5.001 j
^

+ 0.100
5.001 k̂

= (79.98 i
^

+ 59.99 j
^

+ 2.00 k̂ ) × 10−2.

Significance

Note that when using the analytical method with a calculator, it is advisable to carry out your calculations to at
least three decimal places and then round off the final answer to the required number of significant figures, which
is the way we performed calculations in this example. If you round off your partial answer too early, you risk your
final answer having a huge numerical error, and it may be far off from the exact answer or from a value measured
in an experiment.

Check Your Understanding Verify that vector v̂ obtained in Example 2.14 is indeed a unit vector

by computing its magnitude. If the convoy in Example 2.8 was moving across a desert flatland—that is, if the
third component of its velocity was zero—what is the unit vector of its direction of motion? Which geographic
direction does it represent?

2.4 | Products of Vectors

Learning Objectives

By the end of this section, you will be able to:

• Explain the difference between the scalar product and the vector product of two vectors.

• Determine the scalar product of two vectors.

• Determine the vector product of two vectors.

• Describe how the products of vectors are used in physics.

A vector can be multiplied by another vector but may not be divided by another vector. There are two kinds of products
of vectors used broadly in physics and engineering. One kind of multiplication is a scalar multiplication of two vectors.
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Taking a scalar product of two vectors results in a number (a scalar), as its name indicates. Scalar products are used to
define work and energy relations. For example, the work that a force (a vector) performs on an object while causing its
displacement (a vector) is defined as a scalar product of the force vector with the displacement vector. A quite different kind
of multiplication is a vector multiplication of vectors. Taking a vector product of two vectors returns as a result a vector, as
its name suggests. Vector products are used to define other derived vector quantities. For example, in describing rotations,
a vector quantity called torque is defined as a vector product of an applied force (a vector) and its distance from pivot to
force (a vector). It is important to distinguish between these two kinds of vector multiplications because the scalar product
is a scalar quantity and a vector product is a vector quantity.

The Scalar Product of Two Vectors (the Dot Product)
Scalar multiplication of two vectors yields a scalar product.

Scalar Product (Dot Product)

The scalar product A
→

· B→ of two vectors A
→

and B→ is a number defined by the equation

(2.27)A
→

· B→ = AB cos φ,

where φ is the angle between the vectors (shown in Figure 2.27). The scalar product is also called the dot product

because of the dot notation that indicates it.

In the definition of the dot product, the direction of angle φ does not matter, and φ can be measured from either of

the two vectors to the other because cos φ = cos (−φ) = cos (2π − φ) . The dot product is a negative number when

90° < φ ≤ 180° and is a positive number when 0° ≤ φ < 90° . Moreover, the dot product of two parallel vectors is

A
→

· B→ = AB cos 0° = AB , and the dot product of two antiparallel vectors is A
→

· B→ = AB cos 180° = −AB . The

scalar product of two orthogonal vectors vanishes: A
→

· B→ = AB cos 90° = 0 . The scalar product of a vector with itself

is the square of its magnitude:

(2.28)A
→ 2 ≡ A

→
· A

→
= AA cos 0° = A2.

Figure 2.27 The scalar product of two vectors. (a) The angle between the two vectors. (b) The orthogonal projection A⊥ of

vector A
→

onto the direction of vector B→ . (c) The orthogonal projection B⊥ of vector B→ onto the direction of vector

A
→

.

Example 2.15

The Scalar Product

For the vectors shown in Figure 2.13, find the scalar product A
→

· F→ .
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Strategy

From Figure 2.13, the magnitudes of vectors A
→

and F→ are A = 10.0 and F = 20.0. Angle θ , between

them, is the difference: θ = φ − α = 110° − 35° = 75° . Substituting these values into Equation 2.27 gives

the scalar product.

Solution

A straightforward calculation gives us

A
→

· F→ = AF cos θ = (10.0)(20.0) cos 75° = 51.76.

Check Your Understanding For the vectors given in Figure 2.13, find the scalar products A
→

· B→

and F→ · C
→

.

In the Cartesian coordinate system, scalar products of the unit vector of an axis with other unit vectors of axes always vanish
because these unit vectors are orthogonal:

(2.29)i
^

· j
^

= | i
^ || j

^ | cos 90° = (1)(1)(0) = 0,

i
^

· k̂ = | i
^ || k̂ | cos 90° = (1)(1)(0) = 0,

k̂ · j
^

= | k̂ || j
^ | cos 90° = (1)(1)(0) = 0.

In these equations, we use the fact that the magnitudes of all unit vectors are one: | i
^ | = | j

^ | = | k̂ | = 1 . For unit vectors of

the axes, Equation 2.28 gives the following identities:

(2.30)i
^

· i
^

= i2 = j
^

· j
^

= j2 = k̂ · k̂ = k2 = 1.

The scalar product A
→

· B→ can also be interpreted as either the product of B with the orthogonal projection A⊥ of

vector A
→

onto the direction of vector B→ (Figure 2.27(b)) or the product of A with the orthogonal projection B⊥ of

vector B→ onto the direction of vector A
→

(Figure 2.27(c)):

A
→

· B→ = AB cos φ
= B(A cos φ) = BA⊥
= A(B cos φ) = AB⊥ .

For example, in the rectangular coordinate system in a plane, the scalar x-component of a vector is its dot product with the

unit vector i
^

, and the scalar y-component of a vector is its dot product with the unit vector j
^

:

⎧

⎩

⎨
⎪

⎪

A
→

· i
^

= | A
→ || i

^ | cos θA = A cos θA = Ax

A
→

· j
^

= | A
→ || j

^ | cos (90° − θA) = A sin θA = Ay

.

Scalar multiplication of vectors is commutative,

(2.31)A
→

· B→ = B→ · A
→

,
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and obeys the distributive law:

(2.32)A
→

· ( B→ + C
→

) = A
→

· B→ + A
→

· C
→

.

We can use the commutative and distributive laws to derive various relations for vectors, such as expressing the dot product
of two vectors in terms of their scalar components.

Check Your Understanding For vector A
→

= Ax i
^

+ Ay j
^

+ Az k̂ in a rectangular coordinate

system, use Equation 2.29 through Equation 2.32 to show that A
→

· i
^

= Ax A
→

· j
^

= Ay and

A
→

· k̂ = Az .

When the vectors in Equation 2.27 are given in their vector component forms,

A
→

= Ax i
^

+ Ay j
^

+ Az k̂ and B→ = Bx i
^

+ By j
^

+ Bz k̂ ,

we can compute their scalar product as follows:

A
→

· B→ = (Ax i
^

+ Ay j
^

+ Az k̂ ) · (Bx i
^

+ By j
^

+ Bz k̂ )

= Ax Bx i
^

· i
^

+ Ax By i
^

· j
^

+ Ax Bz i
^

· k̂

+Ay Bx j
^

· i
^

+ Ay By j
^

· j
^

+ Ay Bz j
^

· k̂

+Az Bx k̂ · i
^

+ Az By k̂ · j
^

+ Az Bz k̂ · k̂ .

Since scalar products of two different unit vectors of axes give zero, and scalar products of unit vectors with themselves
give one (see Equation 2.29 and Equation 2.30), there are only three nonzero terms in this expression. Thus, the scalar
product simplifies to

(2.33)A
→

· B→ = Ax Bx + Ay By + Az Bz.

We can use Equation 2.33 for the scalar product in terms of scalar components of vectors to find the angle between two
vectors. When we divide Equation 2.27 by AB, we obtain the equation for cos φ , into which we substitute Equation

2.33:

(2.34)
cos φ = A

→
· B→

AB =
Ax Bx + Ay By + Az Bz

AB .

Angle φ between vectors A
→

and B→ is obtained by taking the inverse cosine of the expression in Equation 2.34.

Example 2.16

Angle between Two Forces

Three dogs are pulling on a stick in different directions, as shown in Figure 2.28. The first dog pulls with
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force F→ 1 = (10.0 i
^

− 20.4 j
^

+ 2.0 k̂ )N , the second dog pulls with force F→ 2 = (−15.0 i
^

− 6.2 k̂ )N , and

the third dog pulls with force F→ 3 = (5.0 i
^

+ 12.5 j
^

)N . What is the angle between forces F→ 1 and F→ 2 ?

Figure 2.28 Three dogs are playing with a stick.

Strategy

The components of force vector F→ 1 are F1x = 10.0 N , F1y = −20.4 N , and F1z = 2.0 N , whereas those

of force vector F→ 2 are F2x = −15.0 N , F2y = 0.0 N , and F2z = −6.2 N . Computing the scalar product of

these vectors and their magnitudes, and substituting into Equation 2.34 gives the angle of interest.

Solution

The magnitudes of forces F→ 1 and F→ 2 are

F1 = F1x
2 + F1y

2 + F1z
2 = 10.02 + 20.42 + 2.02 N = 22.8 N

and

F2 = F2x
2 + F2y

2 + F2z
2 = 15.02 + 6.22 N = 16.2 N.

Substituting the scalar components into Equation 2.33 yields the scalar product

F→ 1 · F→ 2 = F1x F2x + F1y F2y + F1z F2z

= (10.0 N)(−15.0 N) + (−20.4 N)(0.0 N) + (2.0 N)(−6.2 N)
= −162.4 N2.

Finally, substituting everything into Equation 2.34 gives the angle

cos φ = F→ 1 · F→ 2
F1 F2

= −162.4N2

(22.8 N)(16.2 N) = −0.439 ⇒ φ = cos−1(−0.439) = 116.0°.

Significance

Notice that when vectors are given in terms of the unit vectors of axes, we can find the angle between them
without knowing the specifics about the geographic directions the unit vectors represent. Here, for example, the
+x-direction might be to the east and the +y-direction might be to the north. But, the angle between the forces in
the problem is the same if the +x-direction is to the west and the +y-direction is to the south.
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Check Your Understanding Find the angle between forces F→ 1 and F→ 3 in Example 2.16.

Example 2.17

The Work of a Force

When force F→ pulls on an object and when it causes its displacement D→ , we say the force performs work.

The amount of work the force does is the scalar product F→ · D→ . If the stick in Example 2.16 moves

momentarily and gets displaced by vector D→ = (−7.9 j
^

− 4.2 k̂ ) cm , how much work is done by the third dog

in Example 2.16?

Strategy

We compute the scalar product of displacement vector D→ with force vector F→ 3 = (5.0 i
^

+ 12.5 j
^

)N , which

is the pull from the third dog. Let’s use W3 to denote the work done by force F→ 3 on displacement D→ .

Solution

Calculating the work is a straightforward application of the dot product:

W3 = F→ 3 · D→ = F3x Dx + F3y Dy + F3z Dz

= (5.0 N)(0.0 cm) + (12.5 N)(−7.9 cm) + (0.0 N)(−4.2 cm)
= −98.7 N · cm.

Significance

The SI unit of work is called the joule (J) , where 1 J = 1 N · m . The unit cm · N can be written as

10−2 m · N = 10−2 J , so the answer can be expressed as W3 = −0.9875 J ≈ −1.0 J .

Check Your Understanding How much work is done by the first dog and by the second dog in
Example 2.16 on the displacement in Example 2.17?

The Vector Product of Two Vectors (the Cross Product)
Vector multiplication of two vectors yields a vector product.

Vector Product (Cross Product)

The vector product of two vectors A
→

and B→ is denoted by A
→

× B→ and is often referred to as a cross

product. The vector product is a vector that has its direction perpendicular to both vectors A
→

and B→ . In other

words, vector A
→

× B→ is perpendicular to the plane that contains vectors A
→

and B→ , as shown in Figure 2.29.

The magnitude of the vector product is defined as

(2.35)| A
→

× B→ | = AB sin φ,

where angle φ , between the two vectors, is measured from vector A
→

(first vector in the product) to vector B→

(second vector in the product), as indicated in Figure 2.29, and is between 0° and 180° .
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According to Equation 2.35, the vector product vanishes for pairs of vectors that are either parallel ⎛
⎝φ = 0°⎞

⎠ or

antiparallel ⎛
⎝φ = 180°⎞

⎠ because sin 0° = sin 180° = 0 .

Figure 2.29 The vector product of two vectors is drawn in three-

dimensional space. (a) The vector product A
→

× B→ is a vector

perpendicular to the plane that contains vectors A
→

and B→ . Small

squares drawn in perspective mark right angles between A
→

and C
→

,

and between B→ and C
→

so that if A
→

and B→ lie on the floor,

vector C
→

points vertically upward to the ceiling. (b) The vector

product B→ × A
→

is a vector antiparallel to vector A
→

× B→ .

On the line perpendicular to the plane that contains vectors A
→

and B→ there are two alternative directions—either up or

down, as shown in Figure 2.29—and the direction of the vector product may be either one of them. In the standard right-

handed orientation, where the angle between vectors is measured counterclockwise from the first vector, vector A
→

× B→

points upward, as seen in Figure 2.29(a). If we reverse the order of multiplication, so that now B→ comes first in the

product, then vector B→ × A
→

must point downward, as seen in Figure 2.29(b). This means that vectors A
→

× B→

and B→ × A
→

are antiparallel to each other and that vector multiplication is not commutative but anticommutative. The

anticommutative property means the vector product reverses the sign when the order of multiplication is reversed:

(2.36)A
→

× B→ = − B→ × A
→

.

The corkscrew right-hand rule is a common mnemonic used to determine the direction of the vector product. As shown

in Figure 2.30, a corkscrew is placed in a direction perpendicular to the plane that contains vectors A
→

and B→ , and

its handle is turned in the direction from the first to the second vector in the product. The direction of the cross product is
given by the progression of the corkscrew.
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Figure 2.30 The corkscrew right-hand rule can be used to determine

the direction of the cross product A
→

× B→ . Place a corkscrew in the

direction perpendicular to the plane that contains vectors A
→

and B→

, and turn it in the direction from the first to the second vector in the
product. The direction of the cross product is given by the progression of
the corkscrew. (a) Upward movement means the cross-product vector
points up. (b) Downward movement means the cross-product vector
points downward.

Example 2.18

The Torque of a Force

The mechanical advantage that a familiar tool called a wrench provides (Figure 2.31) depends on magnitude F
of the applied force, on its direction with respect to the wrench handle, and on how far from the nut this force is

applied. The distance R from the nut to the point where force vector F→ is attached and is represented by the

radial vector R→ . The physical vector quantity that makes the nut turn is called torque (denoted by τ→ ) , and it

is the vector product of the distance between the pivot to force with the force: τ→ = R→ × F→ .

To loosen a rusty nut, a 20.00-N force is applied to the wrench handle at angle φ = 40° and at a distance of 0.25

m from the nut, as shown in Figure 2.31(a). Find the magnitude and direction of the torque applied to the nut.
What would the magnitude and direction of the torque be if the force were applied at angle φ = 45° , as shown

in Figure 2.31(b)? For what value of angle φ does the torque have the largest magnitude?
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Figure 2.31 A wrench provides grip and mechanical advantage in applying torque to turn a nut. (a) Turn
counterclockwise to loosen the nut. (b) Turn clockwise to tighten the nut.

Strategy

We adopt the frame of reference shown in Figure 2.31, where vectors R→ and F→ lie in the xy-plane and

the origin is at the position of the nut. The radial direction along vector R→ (pointing away from the origin)

is the reference direction for measuring the angle φ because R→ is the first vector in the vector product

τ→ = R→ × F→ . Vector τ→ must lie along the z-axis because this is the axis that is perpendicular to the

xy-plane, where both R→ and F→ lie. To compute the magnitude τ , we use Equation 2.35. To find the

direction of τ→ , we use the corkscrew right-hand rule (Figure 2.30).

Solution

For the situation in (a), the corkscrew rule gives the direction of R→ × F→ in the positive direction of the z-axis.

Physically, it means the torque vector τ→ points out of the page, perpendicular to the wrench handle. We identify

F = 20.00 N and R = 0.25 m, and compute the magnitude using Equation 2.11:

τ = | R→ × F→ | = RF sin φ = (0.25 m)(20.00 N) sin 40° = 3.21 N · m.

For the situation in (b), the corkscrew rule gives the direction of R→ × F→ in the negative direction of

the z-axis. Physically, it means the vector τ→ points into the page, perpendicular to the wrench handle. The

magnitude of this torque is

τ = | R→ × F→ | = RF sin φ = (0.25 m)(20.00 N) sin 45° = 3.53 N · m.

The torque has the largest value when sin φ = 1 , which happens when φ = 90° . Physically, it means the

wrench is most effective—giving us the best mechanical advantage—when we apply the force perpendicular
to the wrench handle. For the situation in this example, this best-torque value is
τbest = RF = (0.25 m)(20.00 N) = 5.00 N · m .
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Significance

When solving mechanics problems, we often do not need to use the corkscrew rule at all, as we’ll see now in the

following equivalent solution. Notice that once we have identified that vector R→ × F→ lies along the z-axis,

we can write this vector in terms of the unit vector k̂ of the z-axis:

R→ × F→ = RF sin φ k̂ .

In this equation, the number that multiplies k̂ is the scalar z-component of the vector R→ × F→ . In the

computation of this component, care must be taken that the angle φ is measured counterclockwise from

R→ (first vector) to F→ (second vector). Following this principle for the angles, we obtain

RF sin ( + 40°) = + 3.2 N · m for the situation in (a), and we obtain RF sin (−45°) = −3.5 N · m for the

situation in (b). In the latter case, the angle is negative because the graph in Figure 2.31 indicates the
angle is measured clockwise; but, the same result is obtained when this angle is measured counterclockwise
because +(360° − 45°) = + 315° and sin ( + 315°) = sin (−45°) . In this way, we obtain the solution without

reference to the corkscrew rule. For the situation in (a), the solution is R→ × F→ = + 3.2 N · m k̂ ; for the

situation in (b), the solution is R→ × F→ = −3.5 N · m k̂ .

Check Your Understanding For the vectors given in Figure 2.13, find the vector products

A
→

× B→ and C
→

× F→ .

Similar to the dot product (Equation 2.31), the cross product has the following distributive property:

(2.37)A
→

× ( B→ + C
→

) = A
→

× B→ + A
→

× C
→

.

The distributive property is applied frequently when vectors are expressed in their component forms, in terms of unit vectors
of Cartesian axes.

When we apply the definition of the cross product, Equation 2.35, to unit vectors i
^

, j
^

, and k̂ that define the positive

x-, y-, and z-directions in space, we find that

(2.38)i
^

× i
^

= j
^

× j
^

= k̂ × k̂ = 0.

All other cross products of these three unit vectors must be vectors of unit magnitudes because i
^

, j
^

, and k̂ are

orthogonal. For example, for the pair i
^

and j
^

, the magnitude is | i
^

× j
^ | = i j sin 90° = (1)(1)(1) = 1 . The direction

of the vector product i
^

× j
^

must be orthogonal to the xy-plane, which means it must be along the z-axis. The only unit

vectors along the z-axis are − k̂ or + k̂ . By the corkscrew rule, the direction of vector i
^

× j
^

must be parallel to the

positive z-axis. Therefore, the result of the multiplication i
^

× j
^

is identical to + k̂ . We can repeat similar reasoning for

the remaining pairs of unit vectors. The results of these multiplications are
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(2.39)⎧

⎩

⎨
⎪

⎪

i
^

× j
^

= + k̂ ,

j
^

× k̂ = + i
^

,

k̂ × i
^

= + j
^

.

Notice that in Equation 2.39, the three unit vectors i
^

, j
^

, and k̂ appear in the cyclic order shown in a diagram in

Figure 2.32(a). The cyclic order means that in the product formula, i
^

follows k̂ and comes before j
^

, or k̂ follows

j
^

and comes before i
^

, or j
^

follows i
^

and comes before k̂ . The cross product of two different unit vectors is always

a third unit vector. When two unit vectors in the cross product appear in the cyclic order, the result of such a multiplication
is the remaining unit vector, as illustrated in Figure 2.32(b). When unit vectors in the cross product appear in a different
order, the result is a unit vector that is antiparallel to the remaining unit vector (i.e., the result is with the minus sign, as
shown by the examples in Figure 2.32(c) and Figure 2.32(d). In practice, when the task is to find cross products of
vectors that are given in vector component form, this rule for the cross-multiplication of unit vectors is very useful.

Figure 2.32 (a) The diagram of the cyclic order of the unit vectors of the
axes. (b) The only cross products where the unit vectors appear in the cyclic
order. These products have the positive sign. (c, d) Two examples of cross
products where the unit vectors do not appear in the cyclic order. These
products have the negative sign.

Suppose we want to find the cross product A
→

× B→ for vectors A
→

= Ax i
^

+ Ay j
^

+ Az k̂ and

B→ = Bx i
^

+ By j
^

+ Bz k̂ . We can use the distributive property (Equation 2.37), the anticommutative property

(Equation 2.36), and the results in Equation 2.38 and Equation 2.39 for unit vectors to perform the following algebra:
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A
→

× B→ = (Ax i
^

+ Ay j
^

+ Az k̂ ) × (Bx i
^

+ By j
^

+ Bz k̂ )

= Ax i
^

× (Bx i
^

+ By j
^

+ Bz k̂ ) + Ay j
^

× (Bx i
^

+ By j
^

+ Bz k̂ ) + Az k̂ × (Bx i
^

+ By j
^

+ Bz k̂ )

= Ax Bx i
^

× i
^

+ Ax By i
^

× j
^

+ Ax Bz i
^

× k̂

+Ay Bx j
^

× i
^

+ Ay By j
^

× j
^

+ Ay Bz j
^

× k̂

+Az Bx k̂ × i
^

+ Az By k̂ × j
^

+ Az Bz k̂ × k̂

= Ax Bx(0) + Ax By( + k̂ ) + Ax Bz(− j
^

)

+Ay Bx(− k̂ ) + Ay By(0) + Ay Bz( + i
^

)

+Az Bx( + j
^

) + Az By(− i
^

) + Az Bz(0).

When performing algebraic operations involving the cross product, be very careful about keeping the correct order of
multiplication because the cross product is anticommutative. The last two steps that we still have to do to complete our task
are, first, grouping the terms that contain a common unit vector and, second, factoring. In this way we obtain the following
very useful expression for the computation of the cross product:

(2.40)C
→

= A
→

× B→ = (Ay Bz − Az By) i
^

+ (Az Bx − Ax Bz) j
^

+ (Ax By − Ay Bx) k̂ .

In this expression, the scalar components of the cross-product vector are

(2.41)⎧

⎩

⎨
⎪

⎪

Cx = Ay Bz − Az By,
Cy = Az Bx − Ax Bz,
Cz = Ax By − Ay Bx.

When finding the cross product, in practice, we can use either Equation 2.35 or Equation 2.40, depending on which one
of them seems to be less complex computationally. They both lead to the same final result. One way to make sure if the
final result is correct is to use them both.

Example 2.19

A Particle in a Magnetic Field

When moving in a magnetic field, some particles may experience a magnetic force. Without going into details—a

detailed study of magnetic phenomena comes in later chapters—let’s acknowledge that the magnetic field B→

is a vector, the magnetic force F→ is a vector, and the velocity u→ of the particle is a vector. The magnetic

force vector is proportional to the vector product of the velocity vector with the magnetic field vector, which we

express as F→ = ζ u→ × B→ . In this equation, a constant ζ takes care of the consistency in physical units, so

we can omit physical units on vectors u→ and B→ . In this example, let’s assume the constant ζ is positive.

A particle moving in space with velocity vector u→ = −5.0 i
^

− 2.0 j
^

+ 3.5 k̂ enters a region with a magnetic

field and experiences a magnetic force. Find the magnetic force F→ on this particle at the entry point to the

region where the magnetic field vector is (a) B→ = 7.2 i
^

− j
^

− 2.4 k̂ and (b) B→ = 4.5 k̂ . In each case, find

magnitude F of the magnetic force and angle θ the force vector F→ makes with the given magnetic field vector

B→ .
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Strategy

First, we want to find the vector product u→ × B→ , because then we can determine the magnetic force

using F→ = ζ u→ × B→ . Magnitude F can be found either by using components, F = Fx
2 + Fy

2 + Fz
2 , or by

computing the magnitude | u→ × B→ | directly using Equation 2.35. In the latter approach, we would have to

find the angle between vectors u→ and B→ . When we have F→ , the general method for finding the direction

angle θ involves the computation of the scalar product F→ · B→ and substitution into Equation 2.34. To

compute the vector product we can either use Equation 2.40 or compute the product directly, whichever way is
simpler.

Solution

The components of the velocity vector are ux = −5.0 , uy = −2.0 , and uz = 3.5 .

(a) The components of the magnetic field vector are Bx = 7.2 , By = −1.0 , and Bz = −2.4 . Substituting them

into Equation 2.41 gives the scalar components of vector F→ = ζ u→ × B→ :

⎧

⎩

⎨
⎪

⎪

Fx = ζ(uy Bz − uz By) = ζ[(−2.0)(−2.4) − (3.5)(−1.0)] = 8.3ζ
Fy = ζ(uz Bx − ux Bz) = ζ[(3.5)(7.2) − (−5.0)(−2.4)] = 13.2ζ
Fz = ζ(ux By − uy Bx) = ζ[(−5.0)(−1.0) − (−2.0)(7.2)] = 19.4ζ

.

Thus, the magnetic force is F→ = ζ(8.3 i
^

+ 13.2 j
^

+ 19.4 k̂ ) and its magnitude is

F = Fx
2 + Fy

2 + Fz
2 = ζ (8.3)2 + (13.2)2 + (19.4)2 = 24.9ζ.

To compute angle θ , we may need to find the magnitude of the magnetic field vector,

B = Bx
2 + By

2 + Bz
2 = (7.2)2 + (−1.0)2 + (−2.4)2 = 7.6,

and the scalar product F→ · B→ :

F→ · B→ = Fx Bx + Fy By + Fz Bz = (8.3ζ)(7.2) + (13.2ζ)(−1.0) + (19.4ζ)(−2.4) = 0.

Now, substituting into Equation 2.34 gives angle θ :

cos θ = F→ · B→
FB = 0

(18.2ζ)(7.6) = 0 ⇒ θ = 90°.

Hence, the magnetic force vector is perpendicular to the magnetic field vector. (We could have saved some time
if we had computed the scalar product earlier.)

(b) Because vector B→ = 4.5 k̂ has only one component, we can perform the algebra quickly and find the vector

product directly:

F→ = ζ u→ × B→ = ζ(−5.0 i
^

− 2.0 j
^

+ 3.5 k̂ ) × (4.5 k̂ )

= ζ[(−5.0)(4.5) i
^

× k̂ + (−2.0)(4.5) j
^

× k̂ + (3.5)(4.5) k̂ × k̂ ]

= ζ[−22.5(− j
^

) − 9.0( + i
^

) + 0] = ζ(−9.0 i
^

+ 22.5 j
^

).

The magnitude of the magnetic force is

F = Fx
2 + Fy

2 + Fz
2 = ζ (−9.0)2 + (22.5)2 + (0.0)2 = 24.2ζ.
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Because the scalar product is

F→ · B→ = Fx Bx + Fy By + Fz Bz = (−9.0ζ)(0) + (22.5ζ)(0) + (0)(4.5) = 0,

the magnetic force vector F→ is perpendicular to the magnetic field vector B→ .

Significance

Even without actually computing the scalar product, we can predict that the magnetic force vector must always
be perpendicular to the magnetic field vector because of the way this vector is constructed. Namely, the magnetic

force vector is the vector product F→ = ζ u→ × B→ and, by the definition of the vector product (see Figure

2.29), vector F→ must be perpendicular to both vectors u→ and B→ .

Check Your Understanding Given two vectors A
→

= − i
^

+ j
^

and B→ = 3 i
^

− j
^

, find (a)

A
→

× B→ , (b) | A
→

× B→ | , (c) the angle between A
→

and B→ , and (d) the angle between A
→

× B→ and

vector C
→

= i
^

+ k̂ .

In conclusion to this section, we want to stress that “dot product” and “cross product” are entirely different mathematical
objects that have different meanings. The dot product is a scalar; the cross product is a vector. Later chapters use the
terms dot product and scalar product interchangeably. Similarly, the terms cross product and vector product are used
interchangeably.
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anticommutative property

antiparallel vectors

associative

commutative

component form of a vector

corkscrew right-hand rule

cross product

difference of two vectors

direction angle

displacement

distributive

dot product

equal vectors

magnitude

null vector

orthogonal vectors

parallel vectors

parallelogram rule

polar coordinate system

polar coordinates

radial coordinate

resultant vector

scalar

scalar component

scalar equation

scalar product

scalar quantity

tail-to-head geometric construction

unit vector

unit vectors of the axes

vector

vector components

CHAPTER 2 REVIEW

KEY TERMS
change in the order of operation introduces the minus sign

two vectors with directions that differ by 180°

terms can be grouped in any fashion

operations can be performed in any order

a vector written as the vector sum of its components in terms of unit vectors

a rule used to determine the direction of the vector product

the result of the vector multiplication of vectors is a vector called a cross product; also called a vector
product

vector sum of the first vector with the vector antiparallel to the second

in a plane, an angle between the positive direction of the x-axis and the vector, measured
counterclockwise from the axis to the vector

change in position

multiplication can be distributed over terms in summation

the result of the scalar multiplication of two vectors is a scalar called a dot product; also called a scalar
product

two vectors are equal if and only if all their corresponding components are equal; alternately, two parallel
vectors of equal magnitudes

length of a vector

a vector with all its components equal to zero

two vectors with directions that differ by exactly 90° , synonymous with perpendicular vectors

two vectors with exactly the same direction angles

geometric construction of the vector sum in a plane

an orthogonal coordinate system where location in a plane is given by polar coordinates

a radial coordinate and an angle

distance to the origin in a polar coordinate system

vector sum of two (or more) vectors

a number, synonymous with a scalar quantity in physics

a number that multiplies a unit vector in a vector component of a vector

equation in which the left-hand and right-hand sides are numbers

the result of the scalar multiplication of two vectors is a scalar called a scalar product; also called a dot
product

quantity that can be specified completely by a single number with an appropriate physical unit

geometric construction for drawing the resultant vector of many vectors

vector of a unit magnitude that specifies direction; has no physical unit

unit vectors that define orthogonal directions in a plane or in space

mathematical object with magnitude and direction

orthogonal components of a vector; a vector is the vector sum of its vector components.
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vector equation

vector product

vector quantity

vector sum

equation in which the left-hand and right-hand sides are vectors

the result of the vector multiplication of vectors is a vector called a vector product; also called a cross
product

physical quantity described by a mathematical vector—that is, by specifying both its magnitude and its
direction; synonymous with a vector in physics

resultant of the combination of two (or more) vectors

KEY EQUATIONS
Multiplication by a scalar
(vector equation) B→ = α A

→

Multiplication by a scalar
(scalar equation for
magnitudes)

B = |α|A

Resultant of two vectors D→ AD = D→ AC + D→ CD

Commutative law A
→

+ B→ = B→ + A
→

Associative law ( A
→

+ B→ ) + C
→

= A
→

+ ( B→ + C
→

)

Distributive law α1 A
→

+ α2 A
→

= (α1 + α2) A
→

The component form of a
vector in two dimensions A

→
= Ax i

^
+ Ay j

^

Scalar components of a vector
in two dimensions

⎧

⎩
⎨

Ax = xe − xb
Ay = ye − yb

Magnitude of a vector in a
plane

A = Ax
2 + Ay

2

The direction angle of a vector
in a plane

θA = tan−1 ⎛
⎝

Ay
Ax

⎞
⎠

Scalar components of a vector
in a plane

⎧

⎩
⎨

Ax = A cos θA
Ay = A sin θA

Polar coordinates in a plane
⎧

⎩
⎨
x = r cos φ
y = r sin φ

The component form of a
vector in three dimensions A

→
= Ax i

^
+ Ay j

^
+ Az k̂

The scalar z-component of a
vector in three dimensions

Az = ze − zb

Magnitude of a vector in three
dimensions

A = Ax
2 + Ay

2 + Az
2

Distributive property α( A
→

+ B→ ) = α A
→

+ α B→

Antiparallel vector to A
→ − A

→
= −Ax i

^
− Ay j

^
− Az k̂
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Equal vectors A
→

= B→ ⇔
⎧

⎩
⎨

Ax = Bx
Ay = By

Az = Bz

Components of the resultant of
N vectors

⎧

⎩

⎨
⎪
⎪
⎪

⎪
⎪
⎪

FRx = ∑
k = 1

N
Fkx = F1x + F2x + … + FNx

FRy = ∑
k = 1

N
Fky = F1y + F2y + … + FNy

FRz = ∑
k = 1

N
Fkz = F1z + F2z + … + FNz

General unit vector V̂ = V→
V

Definition of the scalar product A
→

· B→ = AB cos φ

Commutative property of the
scalar product A

→
· B→ = B→ · A

→

Distributive property of the
scalar product

A
→

· ( B→ + C
→

) = A
→

· B→ + A
→

· C
→

Scalar product in terms of
scalar components of vectors

A
→

· B→ = Ax Bx + Ay By + Az Bz

Cosine of the angle between
two vectors

cos φ = A
→

· B→
AB

Dot products of unit vectors i
^

· j
^

= j
^

· k̂ = k̂ · i
^

= 0

Magnitude of the vector product
(definition) | A

→
× B→ | = AB sin φ

Anticommutative property of the
vector product A

→
× B→ = − B→ × A

→

Distributive property of the
vector product

A
→

× ( B→ + C
→

) = A
→

× B→ + A
→

× C
→

Cross products of unit vectors

⎧

⎩

⎨
⎪

⎪

i
^

× j
^

= + k̂ ,

j
^

× k̂ = + i
^

,

k̂ × i
^

= + j
^

.

The cross product in terms of
scalar
components of vectors

A
→

× B→ = (Ay Bz − Az By) i
^

+ (Az Bx − Ax Bz) j
^

+ (Ax By − Ay Bx) k̂

SUMMARY

2.1 Scalars and Vectors

• A vector quantity is any quantity that has magnitude and direction, such as displacement or velocity. Vector
quantities are represented by mathematical objects called vectors.

• Geometrically, vectors are represented by arrows, with the end marked by an arrowhead. The length of the vector is
its magnitude, which is a positive scalar. On a plane, the direction of a vector is given by the angle the vector makes
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with a reference direction, often an angle with the horizontal. The direction angle of a vector is a scalar.

• Two vectors are equal if and only if they have the same magnitudes and directions. Parallel vectors have the same
direction angles but may have different magnitudes. Antiparallel vectors have direction angles that differ by 180° .

Orthogonal vectors have direction angles that differ by 90° .

• When a vector is multiplied by a scalar, the result is another vector of a different length than the length of the original
vector. Multiplication by a positive scalar does not change the original direction; only the magnitude is affected.
Multiplication by a negative scalar reverses the original direction. The resulting vector is antiparallel to the original
vector. Multiplication by a scalar is distributive. Vectors can be divided by nonzero scalars but cannot be divided by
vectors.

• Two or more vectors can be added to form another vector. The vector sum is called the resultant vector. We can add
vectors to vectors or scalars to scalars, but we cannot add scalars to vectors. Vector addition is commutative and
associative.

• To construct a resultant vector of two vectors in a plane geometrically, we use the parallelogram rule. To construct
a resultant vector of many vectors in a plane geometrically, we use the tail-to-head method.

2.2 Coordinate Systems and Components of a Vector

• Vectors are described in terms of their components in a coordinate system. In two dimensions (in a plane), vectors
have two components. In three dimensions (in space), vectors have three components.

• A vector component of a vector is its part in an axis direction. The vector component is the product of the unit vector
of an axis with its scalar component along this axis. A vector is the resultant of its vector components.

• Scalar components of a vector are differences of coordinates, where coordinates of the origin are subtracted from
end point coordinates of a vector. In a rectangular system, the magnitude of a vector is the square root of the sum of
the squares of its components.

• In a plane, the direction of a vector is given by an angle the vector has with the positive x-axis. This direction angle
is measured counterclockwise. The scalar x-component of a vector can be expressed as the product of its magnitude
with the cosine of its direction angle, and the scalar y-component can be expressed as the product of its magnitude
with the sine of its direction angle.

• In a plane, there are two equivalent coordinate systems. The Cartesian coordinate system is defined by unit vectors

i
^

and j
^

along the x-axis and the y-axis, respectively. The polar coordinate system is defined by the radial unit

vector r̂ , which gives the direction from the origin, and a unit vector t̂ , which is perpendicular (orthogonal) to

the radial direction.

2.3 Algebra of Vectors

• Analytical methods of vector algebra allow us to find resultants of sums or differences of vectors without having to
draw them. Analytical methods of vector addition are exact, contrary to graphical methods, which are approximate.

• Analytical methods of vector algebra are used routinely in mechanics, electricity, and magnetism. They are
important mathematical tools of physics.

2.4 Products of Vectors

• There are two kinds of multiplication for vectors. One kind of multiplication is the scalar product, also known as
the dot product. The other kind of multiplication is the vector product, also known as the cross product. The scalar
product of vectors is a number (scalar). The vector product of vectors is a vector.

• Both kinds of multiplication have the distributive property, but only the scalar product has the commutative
property. The vector product has the anticommutative property, which means that when we change the order in
which two vectors are multiplied, the result acquires a minus sign.

• The scalar product of two vectors is obtained by multiplying their magnitudes with the cosine of the angle between
them. The scalar product of orthogonal vectors vanishes; the scalar product of antiparallel vectors is negative.

• The vector product of two vectors is a vector perpendicular to both of them. Its magnitude is obtained by multiplying
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their magnitudes by the sine of the angle between them. The direction of the vector product can be determined by the
corkscrew right-hand rule. The vector product of two either parallel or antiparallel vectors vanishes. The magnitude
of the vector product is largest for orthogonal vectors.

• The scalar product of vectors is used to find angles between vectors and in the definitions of derived scalar physical
quantities such as work or energy.

• The cross product of vectors is used in definitions of derived vector physical quantities such as torque or magnetic
force, and in describing rotations.

CONCEPTUAL QUESTIONS

2.1 Scalars and Vectors

1. A weather forecast states the temperature is predicted to
be −5 °C the following day. Is this temperature a vector or

a scalar quantity? Explain.

2. Which of the following is a vector: a person’s height,
the altitude on Mt. Everest, the velocity of a fly, the age of
Earth, the boiling point of water, the cost of a book, Earth’s
population, or the acceleration of gravity?

3. Give a specific example of a vector, stating its
magnitude, units, and direction.

4. What do vectors and scalars have in common? How do
they differ?

5. Suppose you add two vectors A
→

and B→ . What

relative direction between them produces the resultant with
the greatest magnitude? What is the maximum magnitude?
What relative direction between them produces the
resultant with the smallest magnitude? What is the
minimum magnitude?

6. Is it possible to add a scalar quantity to a vector
quantity?

7. Is it possible for two vectors of different magnitudes
to add to zero? Is it possible for three vectors of different
magnitudes to add to zero? Explain.

8. Does the odometer in an automobile indicate a scalar or
a vector quantity?

9. When a 10,000-m runner competing on a 400-m track
crosses the finish line, what is the runner’s net
displacement? Can this displacement be zero? Explain.

10. A vector has zero magnitude. Is it necessary to specify
its direction? Explain.

11. Can a magnitude of a vector be negative?

12. Can the magnitude of a particle’s displacement be
greater that the distance traveled?

13. If two vectors are equal, what can you say about their
components? What can you say about their magnitudes?
What can you say about their directions?

14. If three vectors sum up to zero, what geometric
condition do they satisfy?

2.2 Coordinate Systems and Components of a

Vector

15. Give an example of a nonzero vector that has a
component of zero.

16. Explain why a vector cannot have a component greater
than its own magnitude.

17. If two vectors are equal, what can you say about their
components?

18. If vectors A
→

and B→ are orthogonal, what is the

component of B→ along the direction of A
→

? What is

the component of A
→

along the direction of B→ ?

19. If one of the two components of a vector is not zero,
can the magnitude of the other vector component of this
vector be zero?

20. If two vectors have the same magnitude, do their
components have to be the same?

2.4 Products of Vectors

21. What is wrong with the following expressions? How

can you correct them? (a) C = A
→

B→ , (b)

C
→

= A
→

B→ , (c) C = A
→

× B→ , (d) C = A B→ , (e)

C + 2 A
→

= B , (f) C
→

= A × B→ , (g)

A
→

· B→ = A
→

× B→ , (h) C
→

= 2 A
→

· B→ , (i)
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C = A
→

/ B→ , and (j) C = A
→

/B .

22. If the cross product of two vectors vanishes, what can
you say about their directions?

23. If the dot product of two vectors vanishes, what can
you say about their directions?

24. What is the dot product of a vector with the cross
product that this vector has with another vector?

PROBLEMS

2.1 Scalars and Vectors

25. A scuba diver makes a slow descent into the depths
of the ocean. His vertical position with respect to a boat
on the surface changes several times. He makes the first
stop 9.0 m from the boat but has a problem with equalizing
the pressure, so he ascends 3.0 m and then continues
descending for another 12.0 m to the second stop. From
there, he ascends 4 m and then descends for 18.0 m,
ascends again for 7 m and descends again for 24.0 m,
where he makes a stop, waiting for his buddy. Assuming the
positive direction up to the surface, express his net vertical
displacement vector in terms of the unit vector. What is his
distance to the boat?

26. In a tug-of-war game on one campus, 15 students pull
on a rope at both ends in an effort to displace the central
knot to one side or the other. Two students pull with force
196 N each to the right, four students pull with force 98
N each to the left, five students pull with force 62 N each
to the left, three students pull with force 150 N each to the
right, and one student pulls with force 250 N to the left.
Assuming the positive direction to the right, express the net
pull on the knot in terms of the unit vector. How big is the
net pull on the knot? In what direction?

27. Suppose you walk 18.0 m straight west and then 25.0
m straight north. How far are you from your starting point
and what is the compass direction of a line connecting
your starting point to your final position? Use a graphical
method.

28. For the vectors given in the following figure, use
a graphical method to find the following resultants: (a)

A
→

+ B→ , (b) C
→

+ B→ , (c) D→ + F→ , (d)

A
→

− B→ , (e) D→ − F→ , (f) A
→

+ 2 F→ , (g); and (h)

A
→

− 4 D→ + 2 F→ .

29. A delivery man starts at the post office, drives 40 km
north, then 20 km west, then 60 km northeast, and finally
50 km north to stop for lunch. Use a graphical method to
find his net displacement vector.

30. An adventurous dog strays from home, runs three
blocks east, two blocks north, one block east, one block
north, and two blocks west. Assuming that each block is
about 100 m, how far from home and in what direction is
the dog? Use a graphical method.

31. In an attempt to escape a desert island, a castaway
builds a raft and sets out to sea. The wind shifts a great
deal during the day and he is blown along the following
directions: 2.50 km and 45.0° north of west, then 4.70 km

and 60.0° south of east, then 1.30 km and 25.0° south of

west, then 5.10 km straight east, then 1.70 km and 5.00°
east of north, then 7.20 km and 55.0° south of west, and

finally 2.80 km and 10.0° north of east. Use a graphical

method to find the castaway’s final position relative to the
island.

32. A small plane flies 40.0 km in a direction 60° north

of east and then flies 30.0 km in a direction 15° north of
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east. Use a graphical method to find the total distance the
plane covers from the starting point and the direction of the
path to the final position.

33. A trapper walks a 5.0-km straight-line distance from
his cabin to the lake, as shown in the following figure. Use
a graphical method (the parallelogram rule) to determine
the trapper’s displacement directly to the east and
displacement directly to the north that sum up to his
resultant displacement vector. If the trapper walked only in
directions east and north, zigzagging his way to the lake,
how many kilometers would he have to walk to get to the
lake?

34. A surveyor measures the distance across a river that
flows straight north by the following method. Starting
directly across from a tree on the opposite bank, the
surveyor walks 100 m along the river to establish a
baseline. She then sights across to the tree and reads that
the angle from the baseline to the tree is 35° . How wide is

the river?

35. A pedestrian walks 6.0 km east and then 13.0 km
north. Use a graphical method to find the pedestrian’s
resultant displacement and geographic direction.

36. The magnitudes of two displacement vectors are A =
20 m and B = 6 m. What are the largest and the smallest
values of the magnitude of the resultant

R→ = A
→

+ B→ ?

2.2 Coordinate Systems and Components of a

Vector

37. Assuming the +x-axis is horizontal and points to the
right, resolve the vectors given in the following figure to
their scalar components and express them in vector
component form.

38. Suppose you walk 18.0 m straight west and then 25.0
m straight north. How far are you from your starting point?
What is your displacement vector? What is the direction of
your displacement? Assume the +x-axis is horizontal to the

right.

39. You drive 7.50 km in a straight line in a direction 15°
east of north. (a) Find the distances you would have to drive
straight east and then straight north to arrive at the same
point. (b) Show that you still arrive at the same point if
the east and north legs are reversed in order. Assume the
+x-axis is to the east.

40. A sledge is being pulled by two horses on a flat
terrain. The net force on the sledge can be expressed in
the Cartesian coordinate system as vector

F→ = (−2980.0 i
^

+ 8200.0 j
^

)N , where i
^

and j
^

denote directions to the east and north, respectively. Find
the magnitude and direction of the pull.

41. A trapper walks a 5.0-km straight-line distance from
her cabin to the lake, as shown in the following figure.
Determine the east and north components of her
displacement vector. How many more kilometers would
she have to walk if she walked along the component
displacements? What is her displacement vector?

42. The polar coordinates of a point are 4π/3 and 5.50 m.

What are its Cartesian coordinates?

43. Two points in a plane have polar coordinates
P1(2.500 m, π/6) and P2(3.800 m, 2π/3) . Determine

their Cartesian coordinates and the distance between them
in the Cartesian coordinate system. Round the distance to a
nearest centimeter.

44. A chameleon is resting quietly on a lanai screen,
waiting for an insect to come by. Assume the origin of a
Cartesian coordinate system at the lower left-hand corner
of the screen and the horizontal direction to the right as the
+x-direction. If its coordinates are (2.000 m, 1.000 m), (a)
how far is it from the corner of the screen? (b) What is its
location in polar coordinates?

45. Two points in the Cartesian plane are A(2.00 m, −4.00
m) and B(−3.00 m, 3.00 m). Find the distance between
them and their polar coordinates.
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46. A fly enters through an open window and zooms
around the room. In a Cartesian coordinate system with
three axes along three edges of the room, the fly changes
its position from point b(4.0 m, 1.5 m, 2.5 m) to point e(1.0
m, 4.5 m, 0.5 m). Find the scalar components of the fly’s
displacement vector and express its displacement vector in
vector component form. What is its magnitude?

2.3 Algebra of Vectors

47. For vectors B→ = − i
^

− 4 j
^

and

A
→

= −3 i
^

− 2 j
^

, calculate (a) A
→

+ B→ and its

magnitude and direction angle, and (b) A
→

− B→ and its

magnitude and direction angle.

48. A particle undergoes three consecutive displacements

given by vectors D→ 1 = (3.0 i
^

− 4.0 j
^

− 2.0 k̂ )mm ,

D→ 2 = (1.0 i
^

− 7.0 j
^

+ 4.0 k̂ )mm , and

D→ 3 = (−7.0 i
^

+ 4.0 j
^

+ 1.0 k̂ )mm . (a) Find the

resultant displacement vector of the particle. (b) What is
the magnitude of the resultant displacement? (c) If all
displacements were along one line, how far would the
particle travel?

49. Given two displacement vectors

A
→

= (3.00 i
^

− 4.00 j
^

+ 4.00 k̂ )m and

B→ = (2.00 i
^

+ 3.00 j
^

− 7.00 k̂ )m , find the

displacements and their magnitudes for (a)

C
→

= A
→

+ B→ and (b) D→ = 2 A
→

− B→ .

50. A small plane flies 40.0 km in a direction 60° north

of east and then flies 30.0 km in a direction 15° north

of east. Use the analytical method to find the total distance
the plane covers from the starting point, and the geographic
direction of its displacement vector. What is its
displacement vector?

51. In an attempt to escape a desert island, a castaway
builds a raft and sets out to sea. The wind shifts a great
deal during the day, and she is blown along the following
straight lines: 2.50 km and 45.0° north of west, then 4.70

km and 60.0° south of east, then 1.30 km and 25.0° south

of west, then 5.10 km due east, then 1.70 km and 5.00°
east of north, then 7.20 km and 55.0° south of west, and

finally 2.80 km and 10.0° north of east. Use the analytical

method to find the resultant vector of all her displacement
vectors. What is its magnitude and direction?

52. Assuming the +x-axis is horizontal to the right for
the vectors given in the following figure, use the analytical

method to find the following resultants: (a) A
→

+ B→ ,

(b) C
→

+ B→ , (c) D→ + F→ , (d) A
→

− B→ , (e)

D→ − F→ , (f) A
→

+ 2 F→ , (g) C
→

− 2 D→ + 3 F→ ,

and (h) A
→

− 4 D→ + 2 F→ .

Figure 2.33

53. Given the vectors in the preceding figure, find vector

R→ that solves equations (a) D→ + R→ = F→ and (b)

C
→

− 2 D→ + 5 R→ = 3 F→ . Assume the +x-axis is

horizontal to the right.

54. A delivery man starts at the post office, drives 40 km
north, then 20 km west, then 60 km northeast, and finally
50 km north to stop for lunch. Use the analytical method
to determine the following: (a) Find his net displacement
vector. (b) How far is the restaurant from the post office?
(c) If he returns directly from the restaurant to the post
office, what is his displacement vector on the return trip?
(d) What is his compass heading on the return trip? Assume
the +x-axis is to the east.

55. An adventurous dog strays from home, runs three
blocks east, two blocks north, and one block east, one block
north, and two blocks west. Assuming that each block is
about a 100 yd, use the analytical method to find the dog’s
net displacement vector, its magnitude, and its direction.
Assume the +x-axis is to the east. How would your answer
be affected if each block was about 100 m?
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56. If D→ = (6.00 i
^

− 8.00 j
^

)m ,

B→ = (−8.00 i
^

+ 3.00 j
^

)m , and

A
→

= (26.0 i
^

+ 19.0 j
^

)m , find the unknown constants a

and b such that a D→ + b B→ + A
→

= 0
→

.

57. Given the displacement vector D→ = (3 i
^

− 4 j
^

)m,

find the displacement vector R→ so that

D→ + R→ = −4D j
^

.

58. Find the unit vector of direction for the following

vector quantities: (a) Force F→ = (3.0 i
^

− 2.0 j
^

)N , (b)

displacement D→ = (−3.0 i
^

− 4.0 j
^

)m , and (c) velocity

v→ = (−5.00 i
^

+ 4.00 j
^

)m/s .

59. At one point in space, the direction of the electric field
vector is given in the Cartesian system by the unit vector

Ê = 1 / 5 i
^

− 2 / 5 j
^

. If the magnitude of the electric

field vector is E = 400.0 V/m, what are the scalar
components Ex , Ey , and Ez of the electric field vector

E→ at this point? What is the direction angle θE of the

electric field vector at this point?

60. A barge is pulled by the two tugboats shown in the
following figure. One tugboat pulls on the barge with a
force of magnitude 4000 units of force at 15° above the

line AB (see the figure and the other tugboat pulls on the
barge with a force of magnitude 5000 units of force at 12°
below the line AB. Resolve the pulling forces to their scalar
components and find the components of the resultant force
pulling on the barge. What is the magnitude of the resultant
pull? What is its direction relative to the line AB?

Figure 2.34

61. In the control tower at a regional airport, an air traffic
controller monitors two aircraft as their positions change
with respect to the control tower. One plane is a cargo
carrier Boeing 747 and the other plane is a Douglas DC-3.
The Boeing is at an altitude of 2500 m, climbing at 10°
above the horizontal, and moving 30° north of west. The

DC-3 is at an altitude of 3000 m, climbing at 5° above the

horizontal, and cruising directly west. (a) Find the position
vectors of the planes relative to the control tower. (b) What
is the distance between the planes at the moment the air
traffic controller makes a note about their positions?

2.4 Products of Vectors

62. Assuming the +x-axis is horizontal to the right for the
vectors in the following figure, find the following scalar

products: (a) A
→

· C
→

, (b) A
→

· F→ , (c) D→ · C
→

, (d)

A
→

· ( F→ + 2 C
→

) , (e) i
^

· B→ , (f) j
^

· B→ , (g)
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(3 i
^

− j
^

) · B→ , and (h) B̂ · B→ .

63. Assuming the +x-axis is horizontal to the right for the
vectors in the preceding figure, find (a) the component of

vector A
→

along vector C
→

, (b) the component of vector

C
→

along vector A
→

, (c) the component of vector i
^

along vector F→ , and (d) the component of vector F→

along vector i
^

.

64. Find the angle between vectors for (a)

D→ = (−3.0 i
^

− 4.0 j
^

)m and

A
→

= (−3.0 i
^

+ 4.0 j
^

)m and (b)

D→ = (2.0 i
^

− 4.0 j
^

+ k̂ )m and

B→ = (−2.0 i
^

+ 3.0 j
^

+ 2.0 k̂ )m .

65. Find the angles that vector

D→ = (2.0 i
^

− 4.0 j
^

+ k̂ )m makes with the x-, y-, and z-

axes.

66. Show that the force vector

D→ = (2.0 i
^

− 4.0 j
^

+ k̂ )N is orthogonal to the force

vector G
→

= (3.0 i
^

+ 4.0 j
^

+ 10.0 k̂ )N .

67. Assuming the +x-axis is horizontal to the right for
the vectors in the previous figure, find the following vector

products: (a) A
→

× C
→

, (b) A
→

× F→ , (c) D→ × C
→

,

(d) A
→

× ( F→ + 2 C
→

) , (e) i
^

× B→ , (f) j
^

× B→ , (g)

(3 i
^

− j
^

) × B→ , and (h) B̂ × B→ .

68. Find the cross product A
→

× C
→

for (a)

A
→

= 2.0 i
^

− 4.0 j
^

+ k̂ and

C
→

= 3.0 i
^

+ 4.0 j
^

+ 10.0 k̂ , (b)

A
→

= 3.0 i
^

+ 4.0 j
^

+ 10.0 k̂ and

C
→

= 2.0 i
^

− 4.0 j
^

+ k̂ , (c) A
→

= −3.0 i
^

− 4.0 j
^

and C
→

= −3.0 i
^

+ 4.0 j
^

, and (d)

C
→

= −2.0 i
^

+ 3.0 j
^

+ 2.0 k̂ and A
→

= −9.0 j
^

.

69. For the vectors in the earlier figure, find (a)

( A
→

× F→ ) · D→ , (b) ( A
→

× F→ ) · ( D→ × B→ ) , and

(c) ( A
→

· F→ )( D→ × B→ ) .

70. (a) If A
→

× F→ = B→ × F→ , can we conclude

A
→

= B→ ? (b) If A
→

· F→ = B→ · F→ , can we

conclude A
→

= B→ ? (c) If F A
→

= B→ F , can we

conclude A
→

= B→ ? Why or why not?

ADDITIONAL PROBLEMS

71. You fly 32.0 km in a straight line in still air in the

direction 35.0° south of west. (a) Find the distances you

would have to fly due south and then due west to arrive
at the same point. (b) Find the distances you would have
to fly first in a direction 45.0° south of west and then

in a direction 45.0° west of north. Note these are the

components of the displacement along a different set of

axes—namely, the one rotated by 45° with respect to the

axes in (a).

72. Rectangular coordinates of a point are given by (2, y)
and its polar coordinates are given by (r, π/6) . Find y and

r.
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73. If the polar coordinates of a point are (r, φ) and

its rectangular coordinates are (x, y) , determine the polar

coordinates of the following points: (a) (−x, y), (b) (−2x,
−2y), and (c) (3x, −3y).

74. Vectors A
→

and B→ have identical magnitudes

of 5.0 units. Find the angle between them if

A
→

+ B→ = 5 2 j
^

.

75. Starting at the island of Moi in an unknown
archipelago, a fishing boat makes a round trip with two
stops at the islands of Noi and Poi. It sails from Moi for
4.76 nautical miles (nmi) in a direction 37° north of east

to Noi. From Noi, it sails 69° west of north to Poi. On

its return leg from Poi, it sails 28° east of south. What

distance does the boat sail between Noi and Poi? What
distance does it sail between Moi and Poi? Express your
answer both in nautical miles and in kilometers. Note: 1
nmi = 1852 m.

76. An air traffic controller notices two signals from two
planes on the radar monitor. One plane is at altitude 800
m and in a 19.2-km horizontal distance to the tower in a
direction 25° south of west. The second plane is at altitude

1100 m and its horizontal distance is 17.6 km and 20°
south of west. What is the distance between these planes?

77. Show that when A
→

+ B→ = C
→

, then

C2 = A2 + B2 + 2AB cos φ , where φ is the angle

between vectors A
→

and B→ .

78. Four force vectors each have the same magnitude f.
What is the largest magnitude the resultant force vector
may have when these forces are added? What is the
smallest magnitude of the resultant? Make a graph of both
situations.

79. A skater glides along a circular path of radius 5.00
m in clockwise direction. When he coasts around one-
half of the circle, starting from the west point, find (a)
the magnitude of his displacement vector and (b) how far
he actually skated. (c) What is the magnitude of his
displacement vector when he skates all the way around the
circle and comes back to the west point?

80. A stubborn dog is being walked on a leash by its
owner. At one point, the dog encounters an interesting scent
at some spot on the ground and wants to explore it in detail,
but the owner gets impatient and pulls on the leash with

force F→ = (98.0 i
^

+ 132.0 j
^

+ 32.0 k̂ )N along the

leash. (a) What is the magnitude of the pulling force? (b)

What angle does the leash make with the vertical?

81. If the velocity vector of a polar bear is

u→ = (−18.0 i
^

− 13.0 j
^

)km/h , how fast and in what

geographic direction is it heading? Here, i
^

and j
^

are

directions to geographic east and north, respectively.

82. Find the scalar components of three-dimensional

vectors G
→

and H→ in the following figure and write

the vectors in vector component form in terms of the unit
vectors of the axes.

83. A diver explores a shallow reef off the coast of Belize.
She initially swims 90.0 m north, makes a turn to the east
and continues for 200.0 m, then follows a big grouper for
80.0 m in the direction 30° north of east. In the meantime,

a local current displaces her by 150.0 m south. Assuming

Chapter 2 | Vectors 101



the current is no longer present, in what direction and how
far should she now swim to come back to the point where
she started?

84. A force vector A
→

has x- and y-components,

respectively, of −8.80 units of force and 15.00 units of

force. The x- and y-components of force vector B→ are,

respectively, 13.20 units of force and −6.60 units of force.

Find the components of force vector C
→

that satisfies the

vector equation A
→

− B→ + 3 C
→

= 0 .

85. Vectors A
→

and B→ are two orthogonal vectors

in the xy-plane and they have identical magnitudes. If

A
→

= 3.0 i
^

+ 4.0 j
^

, find B→ .

86. For the three-dimensional vectors in the following

figure, find (a) G
→

× H→ , (b) | G
→

× H→ | , and (c)

G
→

· H→ .

87. Show that ( B→ × C
→

) · A
→

is the volume of the

parallelepiped, with edges formed by the three vectors in
the following figure.

CHALLENGE PROBLEMS

88. Vector B→ is 5.0 cm long and vector A
→

is 4.0 cm long. Find the angle between these two vectors when
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| A
→

+ B→ | = 3.0 cm and | A
→

− B→ | = 3.0 cm .

89. What is the component of the force vector

G
→

= (3.0 i
^

+ 4.0 j
^

+ 10.0 k̂ )N along the force vector

H→ = (1.0 i
^

+ 4.0 j
^

)N ?

90. The following figure shows a triangle formed by the

three vectors A
→

, B→ , and C
→

. If vector C
→

′ is

drawn between the midpoints of vectors A
→

and B→ ,

show that C
→

′ = C
→

/2 .

91. Distances between points in a plane do not change
when a coordinate system is rotated. In other words, the
magnitude of a vector is invariant under rotations of the
coordinate system. Suppose a coordinate system S is
rotated about its origin by angle φ to become a new

coordinate system S′ , as shown in the following figure. A

point in a plane has coordinates (x, y) in S and coordinates
⎛
⎝x′, y′⎞

⎠ in S′ .

(a) Show that, during the transformation of rotation, the
coordinates in S′ are expressed in terms of the coordinates

in S by the following relations:

⎧

⎩
⎨

x′ = x cos φ + y sin φ
y′ = −x sin φ + y cos φ

.

(b) Show that the distance of point P to the origin is
invariant under rotations of the coordinate system. Here,
you have to show that

x2 + y2 = x′2 + y′2.

(c) Show that the distance between points P and Q is
invariant under rotations of the coordinate system. Here,
you have to show that

(xP − xQ)2 + (yP − yQ)2 = (x′P − x′Q)2 + (y′P − y′Q)2.
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