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Figure 3.1 A JR Central L0 series five-car maglev (magnetic levitation) train undergoing a test run on the Yamanashi Test
Track. The maglev train’s motion can be described using kinematics, the subject of this chapter. (credit: modification of work by
“Maryland GovPics”/Flickr)
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Introduction
Our universe is full of objects in motion. From the stars, planets, and galaxies; to the motion of people and animals; down
to the microscopic scale of atoms and molecules—everything in our universe is in motion. We can describe motion using
the two disciplines of kinematics and dynamics. We study dynamics, which is concerned with the causes of motion, in
Newton’s Laws of Motion; but, there is much to be learned about motion without referring to what causes it, and this
is the study of kinematics. Kinematics involves describing motion through properties such as position, time, velocity, and
acceleration.

A full treatment of kinematics considers motion in two and three dimensions. For now, we discuss motion in one dimension,
which provides us with the tools necessary to study multidimensional motion. A good example of an object undergoing one-
dimensional motion is the maglev (magnetic levitation) train depicted at the beginning of this chapter. As it travels, say, from
Tokyo to Kyoto, it is at different positions along the track at various times in its journey, and therefore has displacements,
or changes in position. It also has a variety of velocities along its path and it undergoes accelerations (changes in velocity).
With the skills learned in this chapter we can calculate these quantities and average velocity. All these quantities can be
described using kinematics, without knowing the train’s mass or the forces involved.
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3.1 | Position, Displacement, and Average Velocity

Learning Objectives

By the end of this section, you will be able to:

• Define position, displacement, and distance traveled.

• Calculate the total displacement given the position as a function of time.

• Determine the total distance traveled.

• Calculate the average velocity given the displacement and elapsed time.

When you’re in motion, the basic questions to ask are: Where are you? Where are you going? How fast are you getting
there? The answers to these questions require that you specify your position, your displacement, and your average
velocity—the terms we define in this section.

Position
To describe the motion of an object, you must first be able to describe its position (x): where it is at any particular time.
More precisely, we need to specify its position relative to a convenient frame of reference. A frame of reference is an
arbitrary set of axes from which the position and motion of an object are described. Earth is often used as a frame of
reference, and we often describe the position of an object as it relates to stationary objects on Earth. For example, a rocket
launch could be described in terms of the position of the rocket with respect to Earth as a whole, whereas a cyclist’s position
could be described in terms of where she is in relation to the buildings she passes Figure 3.2. In other cases, we use
reference frames that are not stationary but are in motion relative to Earth. To describe the position of a person in an airplane,
for example, we use the airplane, not Earth, as the reference frame. To describe the position of an object undergoing one-
dimensional motion, we often use the variable x. Later in the chapter, during the discussion of free fall, we use the variable
y.

Figure 3.2 These cyclists in Vietnam can be described by
their position relative to buildings or a canal. Their motion can
be described by their change in position, or displacement, in a
frame of reference. (credit: Suzan Black)

Displacement
If an object moves relative to a frame of reference—for example, if a professor moves to the right relative to a whiteboard
Figure 3.3—then the object’s position changes. This change in position is called displacement. The word displacement
implies that an object has moved, or has been displaced. Although position is the numerical value of x along a straight line
where an object might be located, displacement gives the change in position along this line. Since displacement indicates
direction, it is a vector and can be either positive or negative, depending on the choice of positive direction. Also, an analysis
of motion can have many displacements embedded in it. If right is positive and an object moves 2 m to the right, then 4 m
to the left, the individual displacements are 2 m and −4 m, respectively.
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Figure 3.3 A professor paces left and right while lecturing. Her position relative to Earth
is given by x. The +2.0-m displacement of the professor relative to Earth is represented by
an arrow pointing to the right.

Displacement

Displacement Δx is the change in position of an object:

(3.1)Δx = xf − x0,

where Δx is displacement, xf is the final position, and x0 is the initial position.

We use the uppercase Greek letter delta (Δ) to mean “change in” whatever quantity follows it; thus, Δx means change in

position (final position less initial position). We always solve for displacement by subtracting initial position x0 from final

position xf . Note that the SI unit for displacement is the meter, but sometimes we use kilometers or other units of length.

Keep in mind that when units other than meters are used in a problem, you may need to convert them to meters to complete
the calculation (see Appendix B).

Objects in motion can also have a series of displacements. In the previous example of the pacing professor, the individual
displacements are 2 m and −4 m, giving a total displacement of −2 m. We define total displacement ΔxTotal , as the sum

of the individual displacements, and express this mathematically with the equation

(3.2)ΔxTotal = ∑ Δxi,

where Δxi are the individual displacements. In the earlier example,

Δx1 = x1 − x0 = 2 − 0 = 2 m.

Similarly,

Δx2 = x2 − x1 = −2 − (2) = −4 m.
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Thus,

ΔxTotal = Δx1 + Δx2 = 2 − 4 = −2 m.

The total displacement is 2 − 4 = −2 m to the left, or in the negative direction. It is also useful to calculate the magnitude
of the displacement, or its size. The magnitude of the displacement is always positive. This is the absolute value of
the displacement, because displacement is a vector and cannot have a negative value of magnitude. In our example, the
magnitude of the total displacement is 2 m, whereas the magnitudes of the individual displacements are 2 m and 4 m.

The magnitude of the total displacement should not be confused with the distance traveled. Distance traveled xTotal , is the

total length of the path traveled between two positions. In the previous problem, the distance traveled is the sum of the
magnitudes of the individual displacements:

xTotal = |Δx1| + |Δx2| = 2 + 4 = 6 m.

Average Velocity
To calculate the other physical quantities in kinematics we must introduce the time variable. The time variable allows us not
only to state where the object is (its position) during its motion, but also how fast it is moving. How fast an object is moving
is given by the rate at which the position changes with time.

For each position xi , we assign a particular time ti . If the details of the motion at each instant are not important, the rate

is usually expressed as the average velocity v– . This vector quantity is simply the total displacement between two points

divided by the time taken to travel between them. The time taken to travel between two points is called the elapsed time
Δt .

Average Velocity

If x1 and x2 are the positions of an object at times t1 and t2 , respectively, then

(3.3)
Average velocity = v– = Displacement between two points

Elapsed time between two points

v– = Δx
Δt = x2 − x1

t2 − t1
.

It is important to note that the average velocity is a vector and can be negative, depending on positions x1 and x2 .

Example 3.1

Delivering Flyers

Jill sets out from her home to deliver flyers for her yard sale, traveling due east along her street lined with houses.
At 0.5 km and 9 minutes later she runs out of flyers and has to retrace her steps back to her house to get more.

This takes an additional 9 minutes. After picking up more flyers, she sets out again on the same path, continuing
where she left off, and ends up 1.0 km from her house. This third leg of her trip takes 15 minutes. At this point

she turns back toward her house, heading west. After 1.75 km and 25 minutes she stops to rest.

a. What is Jill’s total displacement to the point where she stops to rest?

b. What is the magnitude of the final displacement?

c. What is the average velocity during her entire trip?

d. What is the total distance traveled?

e. Make a graph of position versus time.

A sketch of Jill’s movements is shown in Figure 3.4.
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Figure 3.4 Timeline of Jill’s movements.

Strategy

The problem contains data on the various legs of Jill’s trip, so it would be useful to make a table of the physical
quantities. We are given position and time in the wording of the problem so we can calculate the displacements
and the elapsed time. We take east to be the positive direction. From this information we can find the total
displacement and average velocity. Jill’s home is the starting point x0 . The following table gives Jill’s time and

position in the first two columns, and the displacements are calculated in the third column.

Time ti (min) Position xi (km) Displacement Δxi (km)

t0 = 0 x0 = 0 Δx0 = 0

t1 = 9 x1 = 0.5 Δx1 = x1 − x0 = 0.5

t2 = 18 x2 = 0 Δx2 = x2 − x1 = −0.5

t3 = 33 x3 = 1.0 Δx3 = x3 − x2 = 1.0

t4 = 58 x4 = −0.75 Δx4 = x4 − x3 = −1.75

Solution
a. From the above table, the total displacement is

∑ Δxi = 0.5 − 0.5 + 1.0 − 1.75 km = −0.75 km.

b. The magnitude of the total displacement is |−0.75| km = 0.75 km .

c. Average velocity = Total displacement
Elapsed time = v– = −0.75 km

58 min = −0.013 km/min

d. The total distance traveled (sum of magnitudes of individual displacements) is

xTotal = ∑ |Δxi| = 0.5 + 0.5 + 1.0 + 1.75 km = 3.75 km .

e. We can graph Jill’s position versus time as a useful aid to see the motion; the graph is shown in Figure
3.5.
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3.1

Figure 3.5 This graph depicts Jill’s position versus time. The
average velocity is the slope of a line connecting the initial and
final points.

Significance

Jill’s total displacement is −0.75 km, which means at the end of her trip she ends up 0.75 km due west of her

home. The average velocity means if someone was to walk due west at 0.013 km/min starting at the same time

Jill left her home, they both would arrive at the final stopping point at the same time. Note that if Jill were to
end her trip at her house, her total displacement would be zero, as well as her average velocity. The total distance
traveled during the 58 minutes of elapsed time for her trip is 3.75 km.

Check Your Understanding A cyclist rides 3 km west and then turns around and rides 2 km east. (a)
What is his displacement? (b) What is the distance traveled? (c) What is the magnitude of his displacement?

3.2 | Instantaneous Velocity and Speed

Learning Objectives

By the end of this section, you will be able to:

• Explain the difference between average velocity and instantaneous velocity.

• Describe the difference between velocity and speed.

• Calculate the instantaneous velocity given the mathematical equation for the velocity.

• Calculate the speed given the instantaneous velocity.

We have now seen how to calculate the average velocity between two positions. However, since objects in the real world
move continuously through space and time, we would like to find the velocity of an object at any single point. We can find
the velocity of the object anywhere along its path by using some fundamental principles of calculus. This section gives us
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better insight into the physics of motion and will be useful in later chapters.

Instantaneous Velocity
The quantity that tells us how fast an object is moving anywhere along its path is the instantaneous velocity, usually
called simply velocity. It is the average velocity between two points on the path in the limit that the time (and therefore the
displacement) between the two points approaches zero. To illustrate this idea mathematically, we need to express position x
as a continuous function of t denoted by x(t). The expression for the average velocity between two points using this notation

is v– = x(t2) − x(t1)
t2 − t1

. To find the instantaneous velocity at any position, we let t1 = t and t2 = t + Δt . After inserting

these expressions into the equation for the average velocity and taking the limit as Δt → 0 , we find the expression for the

instantaneous velocity:

v(t) = lim
Δt → 0

x(t + Δt) − x(t)
Δt = dx(t)

dt .

Instantaneous Velocity

The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches zero, or the
derivative of x with respect to t:

(3.4)v(t) = d
dtx(t).

Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous velocity at
a specific time point t0 is the rate of change of the position function, which is the slope of the position function x(t) at

t0 . Figure 3.6 shows how the average velocity v– = Δx
Δt between two times approaches the instantaneous velocity at t0.

The instantaneous velocity is shown at time t0 , which happens to be at the maximum of the position function. The slope

of the position graph is zero at this point, and thus the instantaneous velocity is zero. At other times, t1, t2 , and so on,

the instantaneous velocity is not zero because the slope of the position graph would be positive or negative. If the position
function had a minimum, the slope of the position graph would also be zero, giving an instantaneous velocity of zero there
as well. Thus, the zeros of the velocity function give the minimum and maximum of the position function.

Figure 3.6 In a graph of position versus time, the
instantaneous velocity is the slope of the tangent line at a given

point. The average velocities v– = Δx
Δt = xf − xi

tf − ti
between

times Δt = t6 − t1, Δt = t5 − t2, and Δt = t4 − t3 are

shown. When Δt → 0 , the average velocity approaches the

instantaneous velocity at t = t0 .
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Example 3.2

Finding Velocity from a Position-Versus-Time Graph

Given the position-versus-time graph of Figure 3.7, find the velocity-versus-time graph.

Figure 3.7 The object starts out in the positive direction, stops
for a short time, and then reverses direction, heading back
toward the origin. Notice that the object comes to rest
instantaneously, which would require an infinite force. Thus, the
graph is an approximation of motion in the real world. (The
concept of force is discussed in Newton’s Laws of Motion.)

Strategy

The graph contains three straight lines during three time intervals. We find the velocity during each time interval
by taking the slope of the line using the grid.

Solution

Time interval 0 s to 0.5 s: v– = Δx
Δt = 0.5 m − 0.0 m

0.5 s − 0.0 s = 1.0 m/s

Time interval 0.5 s to 1.0 s: v– = Δx
Δt = 0.0 m − 0.0 m

1.0 s − 0.5 s = 0.0 m/s

Time interval 1.0 s to 2.0 s: v– = Δx
Δt = 0.0 m − 0.5 m

2.0 s − 1.0 s = −0.5 m/s

The graph of these values of velocity versus time is shown in Figure 3.8.
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Figure 3.8 The velocity is positive for the first part of the trip,
zero when the object is stopped, and negative when the object
reverses direction.

Significance

During the time interval between 0 s and 0.5 s, the object’s position is moving away from the origin and the
position-versus-time curve has a positive slope. At any point along the curve during this time interval, we can
find the instantaneous velocity by taking its slope, which is +1 m/s, as shown in Figure 3.8. In the subsequent
time interval, between 0.5 s and 1.0 s, the position doesn’t change and we see the slope is zero. From 1.0 s to 2.0
s, the object is moving back toward the origin and the slope is −0.5 m/s. The object has reversed direction and has
a negative velocity.

Speed
In everyday language, most people use the terms speed and velocity interchangeably. In physics, however, they do not have
the same meaning and are distinct concepts. One major difference is that speed has no direction; that is, speed is a scalar.

We can calculate the average speed by finding the total distance traveled divided by the elapsed time:

(3.5)Average speed = s– = Total distance
Elapsed time .

Average speed is not necessarily the same as the magnitude of the average velocity, which is found by dividing the
magnitude of the total displacement by the elapsed time. For example, if a trip starts and ends at the same location, the total
displacement is zero, and therefore the average velocity is zero. The average speed, however, is not zero, because the total
distance traveled is greater than zero. If we take a road trip of 300 km and need to be at our destination at a certain time,
then we would be interested in our average speed.

However, we can calculate the instantaneous speed from the magnitude of the instantaneous velocity:

(3.6)Instantaneous speed = |v(t)|.

If a particle is moving along the x-axis at +7.0 m/s and another particle is moving along the same axis at −7.0 m/s, they have
different velocities, but both have the same speed of 7.0 m/s. Some typical speeds are shown in the following table.
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Speed m/s mi/h

Continental drift 10−7 2 × 10−7

Brisk walk 1.7 3.9

Cyclist 4.4 10

Sprint runner 12.2 27

Rural speed limit 24.6 56

Official land speed record 341.1 763

Speed of sound at sea level 343 768

Space shuttle on reentry 7800 17,500

Escape velocity of Earth* 11,200 25,000

Orbital speed of Earth around the Sun 29,783 66,623

Speed of light in a vacuum 299,792,458 670,616,629

Table 3.1 Speeds of Various Objects *Escape velocity is the velocity at
which an object must be launched so that it overcomes Earth’s gravity and is
not pulled back toward Earth.

Calculating Instantaneous Velocity
When calculating instantaneous velocity, we need to specify the explicit form of the position function x(t). For the moment,
let’s use polynomials x(t) = Atn , because they are easily differentiated using the power rule of calculus:

(3.7)dx(t)
dt = nAtn − 1.

The following example illustrates the use of Equation 3.7.

Example 3.3

Instantaneous Velocity Versus Average Velocity

The position of a particle is given by x(t) = 3.0t + 0.5t3 m .

a. Using Equation 3.4 and Equation 3.7, find the instantaneous velocity at t = 2.0 s.

b. Calculate the average velocity between 1.0 s and 3.0 s.

Strategy

Equation 3.4 give the instantaneous velocity of the particle as the derivative of the position function. Looking
at the form of the position function given, we see that it is a polynomial in t. Therefore, we can use Equation
3.7, the power rule from calculus, to find the solution. We use Equation 3.6 to calculate the average velocity of
the particle.

Solution

a. v(t) = dx(t)
dt = 3.0 + 1.5t2 m/s .

Substituting t = 2.0 s into this equation gives v(2.0 s) = [3.0 + 1.5(2.0)2] m/s = 9.0 m/s .

b. To determine the average velocity of the particle between 1.0 s and 3.0 s, we calculate the values of x(1.0
s) and x(3.0 s):
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x(1.0 s) = ⎡
⎣(3.0)(1.0) + 0.5(1.0)3⎤

⎦ m = 3.5 m

x(3.0 s) = ⎡
⎣(3.0)(3.0) + 0.5(3.0)3⎤

⎦ m = 22.5 m.

Then the average velocity is

v– = x(3.0 s) − x(1.0 s)
t(3.0 s) − t(1.0 s) = 22.5 − 3.5 m

3.0 − 1.0 s = 9.5 m/s.

Significance

In the limit that the time interval used to calculate v− goes to zero, the value obtained for v− converges to the

value of v.

Example 3.4

Instantaneous Velocity Versus Speed

Consider the motion of a particle in which the position is x(t) = 3.0t − 3t2 m .

a. What is the instantaneous velocity at t = 0.25 s, t = 0.50 s, and t = 1.0 s?

b. What is the speed of the particle at these times?

Strategy

The instantaneous velocity is the derivative of the position function and the speed is the magnitude of the
instantaneous velocity. We use Equation 3.4 and Equation 3.7 to solve for instantaneous velocity.

Solution

a. v(t) = dx(t)
dt = 3.0 − 6.0t m/s

b. v(0.25 s) = 1.50 m/s, v(0.5 s) = 0 m/s, v(1.0 s) = −3.0 m/s

c. Speed = |v(t)| = 1.50 m/s, 0.0 m/s, and 3.0 m/s

Significance

The velocity of the particle gives us direction information, indicating the particle is moving to the left (west)
or right (east). The speed gives the magnitude of the velocity. By graphing the position, velocity, and speed as
functions of time, we can understand these concepts visually Figure 3.9. In (a), the graph shows the particle
moving in the positive direction until t = 0.5 s, when it reverses direction. The reversal of direction can also be
seen in (b) at 0.5 s where the velocity is zero and then turns negative. At 1.0 s it is back at the origin where it
started. The particle’s velocity at 1.0 s in (b) is negative, because it is traveling in the negative direction. But in
(c), however, its speed is positive and remains positive throughout the travel time. We can also interpret velocity
as the slope of the position-versus-time graph. The slope of x(t) is decreasing toward zero, becoming zero at 0.5 s
and increasingly negative thereafter. This analysis of comparing the graphs of position, velocity, and speed helps
catch errors in calculations. The graphs must be consistent with each other and help interpret the calculations.
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3.2

Figure 3.9 (a) Position: x(t) versus time. (b) Velocity: v(t) versus time. The slope of the position graph is the
velocity. A rough comparison of the slopes of the tangent lines in (a) at 0.25 s, 0.5 s, and 1.0 s with the values for
velocity at the corresponding times indicates they are the same values. (c) Speed: |v(t)| versus time. Speed is always a

positive number.

Check Your Understanding The position of an object as a function of time is x(t) = −3t2 m . (a) What

is the velocity of the object as a function of time? (b) Is the velocity ever positive? (c) What are the velocity and
speed at t = 1.0 s?

3.3 | Average and Instantaneous Acceleration

Learning Objectives

By the end of this section, you will be able to:

• Calculate the average acceleration between two points in time.

• Calculate the instantaneous acceleration given the functional form of velocity.

• Explain the vector nature of instantaneous acceleration and velocity.

• Explain the difference between average acceleration and instantaneous acceleration.

• Find instantaneous acceleration at a specified time on a graph of velocity versus time.

The importance of understanding acceleration spans our day-to-day experience, as well as the vast reaches of outer space
and the tiny world of subatomic physics. In everyday conversation, to accelerate means to speed up; applying the brake
pedal causes a vehicle to slow down. We are familiar with the acceleration of our car, for example. The greater the
acceleration, the greater the change in velocity over a given time. Acceleration is widely seen in experimental physics. In
linear particle accelerator experiments, for example, subatomic particles are accelerated to very high velocities in collision
experiments, which tell us information about the structure of the subatomic world as well as the origin of the universe.
In space, cosmic rays are subatomic particles that have been accelerated to very high energies in supernovas (exploding
massive stars) and active galactic nuclei. It is important to understand the processes that accelerate cosmic rays because
these rays contain highly penetrating radiation that can damage electronics flown on spacecraft, for example.

Average Acceleration
The formal definition of acceleration is consistent with these notions just described, but is more inclusive.

Average Acceleration

Average acceleration is the rate at which velocity changes:

(3.8)a– = Δv
Δt = vf − v0

tf − t0
,
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where a− is average acceleration, v is velocity, and t is time. (The bar over the a means average acceleration.)

Because acceleration is velocity in meters divided by time in seconds, the SI units for acceleration are often abbreviated m/
s2—that is, meters per second squared or meters per second per second. This literally means by how many meters per second
the velocity changes every second. Recall that velocity is a vector—it has both magnitude and direction—which means that
a change in velocity can be a change in magnitude (or speed), but it can also be a change in direction. For example, if a
runner traveling at 10 km/h due east slows to a stop, reverses direction, continues her run at 10 km/h due west, her velocity
has changed as a result of the change in direction, although the magnitude of the velocity is the same in both directions.
Thus, acceleration occurs when velocity changes in magnitude (an increase or decrease in speed) or in direction, or both.

Acceleration as a Vector

Acceleration is a vector in the same direction as the change in velocity, Δv . Since velocity is a vector, it can change

in magnitude or in direction, or both. Acceleration is, therefore, a change in speed or direction, or both.

Keep in mind that although acceleration is in the direction of the change in velocity, it is not always in the direction of
motion. When an object slows down, its acceleration is opposite to the direction of its motion. Although this is commonly
referred to as deceleration Figure 3.10, we say the train is accelerating in a direction opposite to its direction of motion.

Figure 3.10 A subway train in Sao Paulo, Brazil, decelerates
as it comes into a station. It is accelerating in a direction
opposite to its direction of motion. (credit: Yusuke Kawasaki)

The term deceleration can cause confusion in our analysis because it is not a vector and it does not point to a specific
direction with respect to a coordinate system, so we do not use it. Acceleration is a vector, so we must choose the appropriate
sign for it in our chosen coordinate system. In the case of the train in Figure 3.10, acceleration is in the negative direction
in the chosen coordinate system, so we say the train is undergoing negative acceleration.

If an object in motion has a velocity in the positive direction with respect to a chosen origin and it acquires a constant
negative acceleration, the object eventually comes to a rest and reverses direction. If we wait long enough, the object passes
through the origin going in the opposite direction. This is illustrated in Figure 3.11.
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Figure 3.11 An object in motion with a velocity vector toward the east under
negative acceleration comes to a rest and reverses direction. It passes the origin going
in the opposite direction after a long enough time.

Example 3.5

Calculating Average Acceleration: A Racehorse Leaves the Gate

A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s due west in 1.80 s. What is its
average acceleration?

Figure 3.12 Racehorses accelerating out of the gate. (credit:
Jon Sullivan)

Strategy

First we draw a sketch and assign a coordinate system to the problem Figure 3.13. This is a simple problem, but
it always helps to visualize it. Notice that we assign east as positive and west as negative. Thus, in this case, we
have negative velocity.

Figure 3.13 Identify the coordinate system, the given information, and what you want to
determine.

We can solve this problem by identifying Δv and Δt from the given information, and then calculating the

average acceleration directly from the equation a– = Δv
Δt = vf − v0

tf − t0
.
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3.3

Solution

First, identify the knowns: v0 = 0, vf = −15.0 m/s (the negative sign indicates direction toward the west), Δt =

1.80 s.

Second, find the change in velocity. Since the horse is going from zero to –15.0 m/s, its change in velocity equals
its final velocity:

Δv = vf − v0 = vf = −15.0 m/s.

Last, substitute the known values ( Δv and Δt ) and solve for the unknown a– :

a– = Δv
Δt = −15.0 m/s

1.80 s = −8.33m/s2.

Significance

The negative sign for acceleration indicates that acceleration is toward the west. An acceleration of 8.33 m/s2 due
west means the horse increases its velocity by 8.33 m/s due west each second; that is, 8.33 meters per second per
second, which we write as 8.33 m/s2. This is truly an average acceleration, because the ride is not smooth. We
see later that an acceleration of this magnitude would require the rider to hang on with a force nearly equal to his
weight.

Check Your Understanding Protons in a linear accelerator are accelerated from rest to 2.0 × 107 m/s
in 10–4 s. What is the average acceleration of the protons?

Instantaneous Acceleration
Instantaneous acceleration a, or acceleration at a specific instant in time, is obtained using the same process discussed
for instantaneous velocity. That is, we calculate the average velocity between two points in time separated by Δt and let

Δt approach zero. The result is the derivative of the velocity function v(t), which is instantaneous acceleration and is

expressed mathematically as

(3.9)a(t) = d
dtv(t).

Thus, similar to velocity being the derivative of the position function, instantaneous acceleration is the derivative of the
velocity function. We can show this graphically in the same way as instantaneous velocity. In Figure 3.14, instantaneous
acceleration at time t0 is the slope of the tangent line to the velocity-versus-time graph at time t0. We see that average

acceleration a– = Δv
Δt approaches instantaneous acceleration as Δt approaches zero. Also in part (a) of the figure, we see

that velocity has a maximum when its slope is zero. This time corresponds to the zero of the acceleration function. In
part (b), instantaneous acceleration at the minimum velocity is shown, which is also zero, since the slope of the curve is
zero there, too. Thus, for a given velocity function, the zeros of the acceleration function give either the minimum or the
maximum velocity.
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Figure 3.14 In a graph of velocity versus time, instantaneous acceleration is the slope of the tangent line. (a)

Shown is average acceleration a– = Δv
Δt = vf − vi

tf − ti
between times Δt = t6 − t1, Δt = t5 − t2 , and

Δt = t4 − t3 . When Δt → 0 , the average acceleration approaches instantaneous acceleration at time t0. In view

(a), instantaneous acceleration is shown for the point on the velocity curve at maximum velocity. At this point,
instantaneous acceleration is the slope of the tangent line, which is zero. At any other time, the slope of the tangent
line—and thus instantaneous acceleration—would not be zero. (b) Same as (a) but shown for instantaneous
acceleration at minimum velocity.

To illustrate this concept, let’s look at two examples. First, a simple example is shown using Figure 3.9(b), the velocity-
versus-time graph of Example 3.3, to find acceleration graphically. This graph is depicted in Figure 3.15(a), which is
a straight line. The corresponding graph of acceleration versus time is found from the slope of velocity and is shown in
Figure 3.15(b). In this example, the velocity function is a straight line with a constant slope, thus acceleration is a constant.
In the next example, the velocity function is has a more complicated functional dependence on time.

Figure 3.15 (a, b) The velocity-versus-time graph is linear and has a negative constant slope (a) that is equal to
acceleration, shown in (b).

If we know the functional form of velocity, v(t), we can calculate instantaneous acceleration a(t) at any time point in the
motion using Equation 3.9.
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Example 3.6

Calculating Instantaneous Acceleration

A particle is in motion and is accelerating. The functional form of the velocity is v(t) = 20t − 5t2 m/s .

a. Find the functional form of the acceleration.

b. Find the instantaneous velocity at t = 1, 2, 3, and 5 s.

c. Find the instantaneous acceleration at t = 1, 2, 3, and 5 s.

d. Interpret the results of (c) in terms of the directions of the acceleration and velocity vectors.

Strategy

We find the functional form of acceleration by taking the derivative of the velocity function. Then, we calculate
the values of instantaneous velocity and acceleration from the given functions for each. For part (d), we need to
compare the directions of velocity and acceleration at each time.

Solution

a. a(t) = dv(t)
dt = 20 − 10t m/s2

b. v(1 s) = 15 m/s , v(2 s) = 20 m/s , v(3 s) = 15 m/s , v(5 s) = −25 m/s

c. a(1 s) = 10m/s2 , a(2 s) = 0m/s2 , a(3 s) = −10m/s2 , a(5 s) = −30m/s2

d. At t = 1 s, velocity v(1 s) = 15 m/s is positive and acceleration is positive, so both velocity and

acceleration are in the same direction. The particle is moving faster.

At t = 2 s, velocity has increased to v(2 s) = 20 m/s , where it is maximum, which corresponds to the time when

the acceleration is zero. We see that the maximum velocity occurs when the slope of the velocity function is zero,
which is just the zero of the acceleration function.

At t = 3 s, velocity is v(3 s) = 15 m/s and acceleration is negative. The particle has reduced its velocity and the

acceleration vector is negative. The particle is slowing down.

At t = 5 s, velocity is v(5 s) = −25 m/s and acceleration is increasingly negative. Between the times t = 3 s and

t = 5 s the particle has decreased its velocity to zero and then become negative, thus reversing its direction. The
particle is now speeding up again, but in the opposite direction.

We can see these results graphically in Figure 3.16.
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Figure 3.16 (a) Velocity versus time. Tangent lines are
indicated at times 1, 2, and 3 s. The slopes of the tangents lines
are the accelerations. At t = 3 s, velocity is positive. At t = 5 s,
velocity is negative, indicating the particle has reversed
direction. (b) Acceleration versus time. Comparing the values of
accelerations given by the black dots with the corresponding
slopes of the tangent lines (slopes of lines through black dots) in
(a), we see they are identical.

Significance

By doing both a numerical and graphical analysis of velocity and acceleration of the particle, we can learn
much about its motion. The numerical analysis complements the graphical analysis in giving a total view of
the motion. The zero of the acceleration function corresponds to the maximum of the velocity in this example.
Also in this example, when acceleration is positive and in the same direction as velocity, velocity increases. As
acceleration tends toward zero, eventually becoming negative, the velocity reaches a maximum, after which it
starts decreasing. If we wait long enough, velocity also becomes negative, indicating a reversal of direction. A
real-world example of this type of motion is a car with a velocity that is increasing to a maximum, after which it
starts slowing down, comes to a stop, then reverses direction.
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3.4 Check Your Understanding An airplane lands on a runway traveling east. Describe its acceleration.

Getting a Feel for Acceleration
You are probably used to experiencing acceleration when you step into an elevator, or step on the gas pedal in your car.
However, acceleration is happening to many other objects in our universe with which we don’t have direct contact. Table
3.2 presents the acceleration of various objects. We can see the magnitudes of the accelerations extend over many orders of
magnitude.

Acceleration Value (m/s2)

High-speed train 0.25

Elevator 2

Cheetah 5

Object in a free fall without air resistance near the surface of Earth 9.8

Space shuttle maximum during launch 29

Parachutist peak during normal opening of parachute 59

F16 aircraft pulling out of a dive 79

Explosive seat ejection from aircraft 147

Sprint missile 982

Fastest rocket sled peak acceleration 1540

Jumping flea 3200

Baseball struck by a bat 30,000

Closing jaws of a trap-jaw ant 1,000,000

Proton in the large Hadron collider 1.9 × 109

Table 3.2 Typical Values of Acceleration (credit: Wikipedia: Orders of Magnitude
(acceleration))

In this table, we see that typical accelerations vary widely with different objects and have nothing to do with object size
or how massive it is. Acceleration can also vary widely with time during the motion of an object. A drag racer has a large
acceleration just after its start, but then it tapers off as the vehicle reaches a constant velocity. Its average acceleration can be
quite different from its instantaneous acceleration at a particular time during its motion. Figure 3.17 compares graphically
average acceleration with instantaneous acceleration for two very different motions.
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Figure 3.17 Graphs of instantaneous acceleration versus time for two different one-dimensional motions. (a) Acceleration
varies only slightly and is always in the same direction, since it is positive. The average over the interval is nearly the same as
the acceleration at any given time. (b) Acceleration varies greatly, perhaps representing a package on a post office conveyor
belt that is accelerated forward and backward as it bumps along. It is necessary to consider small time intervals (such as from
0–1.0 s) with constant or nearly constant acceleration in such a situation.

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with a mouse and plot
his motion. Set the position, velocity, or acceleration and let the simulation move the man for you. Visit this link
(https://openstaxcollege.org/l/21movmansimul) to use the moving man simulation.

3.4 | Motion with Constant Acceleration

Learning Objectives

By the end of this section, you will be able to:

• Identify which equations of motion are to be used to solve for unknowns.

• Use appropriate equations of motion to solve a two-body pursuit problem.

You might guess that the greater the acceleration of, say, a car moving away from a stop sign, the greater the car’s
displacement in a given time. But, we have not developed a specific equation that relates acceleration and displacement. In
this section, we look at some convenient equations for kinematic relationships, starting from the definitions of displacement,
velocity, and acceleration. We first investigate a single object in motion, called single-body motion. Then we investigate the
motion of two objects, called two-body pursuit problems.

Notation
First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch,
is a great simplification. Since elapsed time is Δt = tf − t0 , taking t0 = 0 means that Δt = tf , the final time on the

stopwatch. When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity.
That is, x0 is the initial position and v0 is the initial velocity. We put no subscripts on the final values. That is, t is the

final time, x is the final position, and v is the final velocity. This gives a simpler expression for elapsed time, Δt = t . It also

simplifies the expression for x displacement, which is now Δx = x − x0 . Also, it simplifies the expression for change in

velocity, which is now Δv = v − v0 . To summarize, using the simplified notation, with the initial time taken to be zero,
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Δt = t
Δx = x − x0
Δv = v − v0,

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is
under consideration.

We now make the important assumption that acceleration is constant. This assumption allows us to avoid using calculus to
find instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal—that
is,

a– = a = constant.

Thus, we can use the symbol a for acceleration at all times. Assuming acceleration to be constant does not seriously limit
the situations we can study nor does it degrade the accuracy of our treatment. For one thing, acceleration is constant in
a great number of situations. Furthermore, in many other situations we can describe motion accurately by assuming a
constant acceleration equal to the average acceleration for that motion. Lastly, for motion during which acceleration changes
drastically, such as a car accelerating to top speed and then braking to a stop, motion can be considered in separate parts,
each of which has its own constant acceleration.

Displacement and Position from Velocity
To get our first two equations, we start with the definition of average velocity:

v– = Δx
Δt .

Substituting the simplified notation for Δx and Δt yields

v– = x − x0
t .

Solving for x gives us

(3.10)x = x0 + v–t,

where the average velocity is

(3.11)v– = v0 + v
2 .

The equation v– = v0 + v
2 reflects the fact that when acceleration is constant, v is just the simple average of the initial and

final velocities. Figure 3.18 illustrates this concept graphically. In part (a) of the figure, acceleration is constant, with
velocity increasing at a constant rate. The average velocity during the 1-h interval from 40 km/h to 80 km/h is 60 km/h:

v– = v0 + v
2 = 40 km/h + 80 km/h

2 = 60 km/h.

In part (b), acceleration is not constant. During the 1-h interval, velocity is closer to 80 km/h than 40 km/h. Thus, the average
velocity is greater than in part (a).
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Figure 3.18 (a) Velocity-versus-time graph with constant acceleration showing the initial and final velocities v0 and v .

The average velocity is 1
2(v0 + v) = 60km/h . (b) Velocity-versus-time graph with an acceleration that changes with time.

The average velocity is not given by 1
2(v0 + v) , but is greater than 60 km/h.

Solving for Final Velocity from Acceleration and Time
We can derive another useful equation by manipulating the definition of acceleration:

a = Δv
Δt .

Substituting the simplified notation for Δv and Δt gives us

a = v − v0
t (constant a).

Solving for v yields

(3.12)v = v0 + at (constant a).

Example 3.7

Calculating Final Velocity

An airplane lands with an initial velocity of 70.0 m/s and then decelerates at 1.50 m/s2 for 40.0 s. What is its final
velocity?

Strategy

First, we identify the knowns: v0 = 70 m/s, a = −1.50 m/s2, t = 40 s .

Second, we identify the unknown; in this case, it is final velocity vf .

Last, we determine which equation to use. To do this we figure out which kinematic equation gives the unknown
in terms of the knowns. We calculate the final velocity using Equation 3.12, v = v0 + at .

Solution

Substitute the known values and solve:
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v = v0 + at = 70.0 m/s + ⎛
⎝−1.50 m/s2⎞

⎠(40.0 s) = 10.0 m/s.

Figure 3.19 is a sketch that shows the acceleration and velocity vectors.

Figure 3.19 The airplane lands with an initial velocity of 70.0 m/s and slows to a final velocity of 10.0 m/s before
heading for the terminal. Note the acceleration is negative because its direction is opposite to its velocity, which is
positive.

Significance

The final velocity is much less than the initial velocity, as desired when slowing down, but is still positive (see
figure). With jet engines, reverse thrust can be maintained long enough to stop the plane and start moving it
backward, which is indicated by a negative final velocity, but is not the case here.

In addition to being useful in problem solving, the equation v = v0 + at gives us insight into the relationships among

velocity, acceleration, and time. We can see, for example, that

• Final velocity depends on how large the acceleration is and how long it lasts

• If the acceleration is zero, then the final velocity equals the initial velocity (v = v0), as expected (in other words,
velocity is constant)

• If a is negative, then the final velocity is less than the initial velocity

All these observations fit our intuition. Note that it is always useful to examine basic equations in light of our intuition and
experience to check that they do indeed describe nature accurately.

Solving for Final Position with Constant Acceleration
We can combine the previous equations to find a third equation that allows us to calculate the final position of an object
experiencing constant acceleration. We start with

v = v0 + at.

Adding v0 to each side of this equation and dividing by 2 gives

v0 + v
2 = v0 + 1

2at.

Since
v0 + v

2 = v– for constant acceleration, we have

v– = v0 + 1
2at.

Now we substitute this expression for v– into the equation for displacement, x = x0 + v–t , yielding

(3.13)x = x0 + v0 t + 1
2at2 (constant a).
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Example 3.8

Calculating Displacement of an Accelerating Object

Dragsters can achieve an average acceleration of 26.0 m/s2. Suppose a dragster accelerates from rest at this rate
for 5.56 s Figure 3.20. How far does it travel in this time?

Figure 3.20 U.S. Army Top Fuel pilot Tony “The Sarge”
Schumacher begins a race with a controlled burnout. (credit: Lt.
Col. William Thurmond. Photo Courtesy of U.S. Army.)

Strategy

First, let’s draw a sketch Figure 3.21. We are asked to find displacement, which is x if we take x0 to be zero.

(Think about x0 as the starting line of a race. It can be anywhere, but we call it zero and measure all other

positions relative to it.) We can use the equation x = x0 + v0 t + 1
2at2 when we identify v0 , a , and t from the

statement of the problem.

Figure 3.21 Sketch of an accelerating dragster.

Solution

First, we need to identify the knowns. Starting from rest means that v0 = 0 , a is given as 26.0 m/s2 and t is given

as 5.56 s.

Second, we substitute the known values into the equation to solve for the unknown:

x = x0 + v0 t + 1
2at2.
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Since the initial position and velocity are both zero, this equation simplifies to

x = 1
2at2.

Substituting the identified values of a and t gives

x = 1
2(26.0 m/s2)(5.56 s)2 = 402 m.

Significance

If we convert 402 m to miles, we find that the distance covered is very close to one-quarter of a mile, the standard
distance for drag racing. So, our answer is reasonable. This is an impressive displacement to cover in only 5.56
s, but top-notch dragsters can do a quarter mile in even less time than this. If the dragster were given an initial
velocity, this would add another term to the distance equation. If the same acceleration and time are used in the
equation, the distance covered would be much greater.

What else can we learn by examining the equation x = x0 + v0 t + 1
2at2? We can see the following relationships:

• Displacement depends on the square of the elapsed time when acceleration is not zero. In Example 3.8, the
dragster covers only one-fourth of the total distance in the first half of the elapsed time.

• If acceleration is zero, then initial velocity equals average velocity (v0 = v–) , and

x = x0 + v0 t + 1
2 at2 becomes x = x0 + v0 t.

Solving for Final Velocity from Distance and Acceleration
A fourth useful equation can be obtained from another algebraic manipulation of previous equations. If we solve
v = v0 + at for t, we get

t = v − v0
a .

Substituting this and v– = v0 + v
2 into x = x0 + v–t , we get

(3.14)v2 = v0
2 + 2a(x − x0) (constant a).

Example 3.9

Calculating Final Velocity

Calculate the final velocity of the dragster in Example 3.8 without using information about time.

Strategy

The equation v2 = v0
2 + 2a(x − x0) is ideally suited to this task because it relates velocities, acceleration, and

displacement, and no time information is required.

Solution

First, we identify the known values. We know that v0 = 0, since the dragster starts from rest. We also know that x
− x0 = 402 m (this was the answer in Example 3.8). The average acceleration was given by a = 26.0 m/s2.

Second, we substitute the knowns into the equation v2 = v0
2 + 2a(x − x0) and solve for v:

v2 = 0 + 2⎛
⎝26.0 m/s2⎞

⎠(402 m).
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Thus,

v2 = 2.09 × 104 m /s2

v = 2.09 × 104 m2 /s2 = 145 m/s.

Significance

A velocity of 145 m/s is about 522 km/h, or about 324 mi/h, but even this breakneck speed is short of the record
for the quarter mile. Also, note that a square root has two values; we took the positive value to indicate a velocity
in the same direction as the acceleration.

An examination of the equation v2 = v0
2 + 2a(x − x0) can produce additional insights into the general relationships among

physical quantities:

• The final velocity depends on how large the acceleration is and the distance over which it acts.

• For a fixed acceleration, a car that is going twice as fast doesn’t simply stop in twice the distance. It takes much
farther to stop. (This is why we have reduced speed zones near schools.)

Putting Equations Together
In the following examples, we continue to explore one-dimensional motion, but in situations requiring slightly more
algebraic manipulation. The examples also give insight into problem-solving techniques. The note that follows is provided
for easy reference to the equations needed. Be aware that these equations are not independent. In many situations we have
two unknowns and need two equations from the set to solve for the unknowns. We need as many equations as there are
unknowns to solve a given situation.

Summary of Kinematic Equations (constant a)

x = x0 + v–t

v– = v0 + v
2

v = v0 + at

x = x0 + v0 t + 1
2at2

v2 = v0
2 + 2a(x − x0)

Before we get into the examples, let’s look at some of the equations more closely to see the behavior of acceleration at
extreme values. Rearranging Equation 3.12, we have

a = v − v0
t .

From this we see that, for a finite time, if the difference between the initial and final velocities is small, the acceleration is
small, approaching zero in the limit that the initial and final velocities are equal. On the contrary, in the limit t → 0 for a

finite difference between the initial and final velocities, acceleration becomes infinite.

Similarly, rearranging Equation 3.14, we can express acceleration in terms of velocities and displacement:

a =
v2 − v0

2

2(x − x0).

Thus, for a finite difference between the initial and final velocities acceleration becomes infinite in the limit the
displacement approaches zero. Acceleration approaches zero in the limit the difference in initial and final velocities
approaches zero for a finite displacement.
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Example 3.10

How Far Does a Car Go?

On dry concrete, a car can decelerate at a rate of 7.00 m/s2, whereas on wet concrete it can decelerate at only 5.00
m/s2. Find the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) on (a) dry concrete and (b)
wet concrete. (c) Repeat both calculations and find the displacement from the point where the driver sees a traffic
light turn red, taking into account his reaction time of 0.500 s to get his foot on the brake.

Strategy

First, we need to draw a sketch Figure 3.22. To determine which equations are best to use, we need to list all the
known values and identify exactly what we need to solve for.

Figure 3.22 Sample sketch to visualize deceleration and stopping distance of a car.

Solution
a. First, we need to identify the knowns and what we want to solve for. We know that v0 = 30.0 m/s, v = 0,

and a = −7.00 m/s2 (a is negative because it is in a direction opposite to velocity). We take x0 to be zero.
We are looking for displacement Δx , or x − x0.

Second, we identify the equation that will help us solve the problem. The best equation to use is

v2 = v0
2 + 2a(x − x0).

This equation is best because it includes only one unknown, x. We know the values of all the other
variables in this equation. (Other equations would allow us to solve for x, but they require us to know the
stopping time, t, which we do not know. We could use them, but it would entail additional calculations.)
Third, we rearrange the equation to solve for x:

x − x0 =
v2 − v0

2

2a

and substitute the known values:

x − 0 = 02 − (30.0 m/s)2

2(−7.00m/s2)
.

Thus,

x = 64.3 m on dry concrete.
b. This part can be solved in exactly the same manner as (a). The only difference is that the acceleration is

−5.00 m/s2. The result is

xwet = 90.0 m on wet concrete.
c. When the driver reacts, the stopping distance is the same as it is in (a) and (b) for dry and wet concrete.

So, to answer this question, we need to calculate how far the car travels during the reaction time, and then
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add that to the stopping time. It is reasonable to assume the velocity remains constant during the driver’s
reaction time.
To do this, we, again, identify the knowns and what we want to solve for. We know that v– = 30.0 m/s ,

treaction = 0.500 s , and areaction = 0 . We take x0-reaction to be zero. We are looking for xreaction .

Second, as before, we identify the best equation to use. In this case, x = x0 + v–t works well because the

only unknown value is x, which is what we want to solve for.
Third, we substitute the knowns to solve the equation:

x = 0 + (30.0 m/s)(0.500 s) = 15.0 m.

This means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases
of dry and wet concrete 15.0 m greater than if he reacted instantly.
Last, we then add the displacement during the reaction time to the displacement when braking (Figure
3.23),

xbraking + xreaction = xtotal,

and find (a) to be 64.3 m + 15.0 m = 79.3 m when dry and (b) to be 90.0 m + 15.0 m = 105 m when wet.

Figure 3.23 The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction
time. Shown here are the braking distances for dry and wet pavement, as calculated in this example, for a car
traveling initially at 30.0 m/s. Also shown are the total distances traveled from the point when the driver first sees a
light turn red, assuming a 0.500-s reaction time.

Significance

The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer
to stop a car on wet pavement than dry. It is interesting that reaction time adds significantly to the displacements,
but more important is the general approach to solving problems. We identify the knowns and the quantities to be
determined, then find an appropriate equation. If there is more than one unknown, we need as many independent
equations as there are unknowns to solve. There is often more than one way to solve a problem. The various parts
of this example can, in fact, be solved by other methods, but the solutions presented here are the shortest.

Example 3.11

Calculating Time

Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it accelerates
at 2.00 m/s2, how long does it take the car to travel the 200 m up the ramp? (Such information might be useful to
a traffic engineer.)
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3.5

Strategy

First, we draw a sketch Figure 3.24. We are asked to solve for time t. As before, we identify the known quantities
to choose a convenient physical relationship (that is, an equation with one unknown, t.)

Figure 3.24 Sketch of a car accelerating on a freeway ramp.

Solution

Again, we identify the knowns and what we want to solve for. We know that x0 = 0,

v0 = 10 m/s, a = 2.00 m/s2 , and x = 200 m.

We need to solve for t. The equation x = x0 + v0 t + 1
2at2 works best because the only unknown in the equation

is the variable t, for which we need to solve. From this insight we see that when we input the knowns into the
equation, we end up with a quadratic equation.

We need to rearrange the equation to solve for t, then substituting the knowns into the equation:

200 m = 0 m + (10.0 m/s)t + 1
2

⎛
⎝2.00 m/s2⎞

⎠t2.

We then simplify the equation. The units of meters cancel because they are in each term. We can get the units of
seconds to cancel by taking t = t s, where t is the magnitude of time and s is the unit. Doing so leaves

200 = 10t + t2.

We then use the quadratic formula to solve for t,

t2 + 10t − 200 = 0

t = −b ± b2 − 4ac
2a ,

which yields two solutions: t = 10.0 and t = −20.0. A negative value for time is unreasonable, since it would mean
the event happened 20 s before the motion began. We can discard that solution. Thus,

t = 10.0 s.

Significance

Whenever an equation contains an unknown squared, there are two solutions. In some problems both solutions are
meaningful; in others, only one solution is reasonable. The 10.0-s answer seems reasonable for a typical freeway
on-ramp.

Check Your Understanding A manned rocket accelerates at a rate of 20 m/s2 during launch. How long
does it take the rocket to reach a velocity of 400 m/s?

Chapter 3 | Motion Along a Straight Line 133



Example 3.12

Acceleration of a Spaceship

A spaceship has left Earth’s orbit and is on its way to the Moon. It accelerates at 20 m/s2 for 2 min and covers a
distance of 1000 km. What are the initial and final velocities of the spaceship?

Strategy

We are asked to find the initial and final velocities of the spaceship. Looking at the kinematic equations, we see
that one equation will not give the answer. We must use one kinematic equation to solve for one of the velocities
and substitute it into another kinematic equation to get the second velocity. Thus, we solve two of the kinematic
equations simultaneously.

Solution

First we solve for v0 using x = x0 + v0 t + 1
2at2 = 1

2at2 :

x − x0 = v0 t + 1
2at

1.0 × 106 m = v0(120.0 s) + 1
2(20.0m/s2)(120.0 s)2

v0 = 7133.3 m/s.

Then we substitute v0 into v = v0 + at to solve for the final velocity:

v = v0 + at = 7133.3 m/s + (20.0 m/s2)(120.0 s) = 9533.3 m/s.

Significance

There are six variables in displacement, time, velocity, and acceleration that describe motion in one dimension.
The initial conditions of a given problem can be many combinations of these variables. Because of this diversity,
solutions may not be easy as simple substitutions into one of the equations. This example illustrates that solutions
to kinematics may require solving two simultaneous kinematic equations.

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process
of developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers
and insights into physical relationships. The next level of complexity in our kinematics problems involves the motion of
two interrelated bodies, called two-body pursuit problems.

Two-Body Pursuit Problems
Up until this point we have looked at examples of motion involving a single body. Even for the problem with two cars
and the stopping distances on wet and dry roads, we divided this problem into two separate problems to find the answers.
In a two-body pursuit problem, the motions of the objects are coupled—meaning, the unknown we seek depends on the
motion of both objects. To solve these problems we write the equations of motion for each object and then solve them
simultaneously to find the unknown. This is illustrated in Figure 3.25.

Figure 3.25 A two-body pursuit scenario where car 2 has a constant velocity and car 1 is
behind with a constant acceleration. Car 1 catches up with car 2 at a later time.

The time and distance required for car 1 to catch car 2 depends on the initial distance car 1 is from car 2 as well as the
velocities of both cars and the acceleration of car 1. The kinematic equations describing the motion of both cars must be
solved to find these unknowns.

134 Chapter 3 | Motion Along a Straight Line

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



Consider the following example.

Example 3.13

Cheetah Catching a Gazelle

A cheetah waits in hiding behind a bush. The cheetah spots a gazelle running past at 10 m/s. At the instant the
gazelle passes the cheetah, the cheetah accelerates from rest at 4 m/s2 to catch the gazelle. (a) How long does it
take the cheetah to catch the gazelle? (b) What is the displacement of the gazelle and cheetah?

Strategy

We use the set of equations for constant acceleration to solve this problem. Since there are two objects in
motion, we have separate equations of motion describing each animal. But what links the equations is a common
parameter that has the same value for each animal. If we look at the problem closely, it is clear the common
parameter to each animal is their position x at a later time t. Since they both start at x0 = 0 , their displacements

are the same at a later time t, when the cheetah catches up with the gazelle. If we pick the equation of motion that
solves for the displacement for each animal, we can then set the equations equal to each other and solve for the
unknown, which is time.

Solution
a. Equation for the gazelle: The gazelle has a constant velocity, which is its average velocity, since it is not

accelerating. Therefore, we use Equation 3.10 with x0 = 0 :

x = x0 + v–t = v–t.

Equation for the cheetah: The cheetah is accelerating from rest, so we use Equation 3.13 with x0 = 0
and v0 = 0 :

x = x0 + v0 t + 1
2at2 = 1

2at2.

Now we have an equation of motion for each animal with a common parameter, which can be eliminated
to find the solution. In this case, we solve for t:

x = v–t = 1
2at2

t = 2v–
a .

The gazelle has a constant velocity of 10 m/s, which is its average velocity. The acceleration of the
cheetah is 4 m/s2. Evaluating t, the time for the cheetah to reach the gazelle, we have

t = 2v–
a = 2(10)

4 = 5 s.

b. To get the displacement, we use either the equation of motion for the cheetah or the gazelle, since they
should both give the same answer.
Displacement of the cheetah:

x = 1
2at2 = 1

2(4)(5)2 = 50 m.

Displacement of the gazelle:

x = v–t = 10(5) = 50 m.

We see that both displacements are equal, as expected.

Significance

It is important to analyze the motion of each object and to use the appropriate kinematic equations to describe the
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individual motion. It is also important to have a good visual perspective of the two-body pursuit problem to see
the common parameter that links the motion of both objects.

Check Your Understanding A bicycle has a constant velocity of 10 m/s. A person starts from rest and
runs to catch up to the bicycle in 30 s. What is the acceleration of the person?

3.5 | Free Fall

Learning Objectives

By the end of this section, you will be able to:

• Use the kinematic equations with the variables y and g to analyze free-fall motion.

• Describe how the values of the position, velocity, and acceleration change during a free fall.

• Solve for the position, velocity, and acceleration as functions of time when an object is in a free
fall.

An interesting application of Equation 3.4 through Equation 3.14 is called free fall, which describes the motion of an
object falling in a gravitational field, such as near the surface of Earth or other celestial objects of planetary size. Let’s
assume the body is falling in a straight line perpendicular to the surface, so its motion is one-dimensional. For example, we
can estimate the depth of a vertical mine shaft by dropping a rock into it and listening for the rock to hit the bottom. But
“falling,” in the context of free fall, does not necessarily imply the body is moving from a greater height to a lesser height.
If a ball is thrown upward, the equations of free fall apply equally to its ascent as well as its descent.

Gravity
The most remarkable and unexpected fact about falling objects is that if air resistance and friction are negligible, then in
a given location all objects fall toward the center of Earth with the same constant acceleration, independent of their mass.
This experimentally determined fact is unexpected because we are so accustomed to the effects of air resistance and friction
that we expect light objects to fall slower than heavy ones. Until Galileo Galilei (1564–1642) proved otherwise, people
believed that a heavier object has a greater acceleration in a free fall. We now know this is not the case. In the absence of
air resistance, heavy objects arrive at the ground at the same time as lighter objects when dropped from the same height
Figure 3.26.
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Figure 3.26 A hammer and a feather fall with the same constant acceleration if air resistance is negligible. This is a general
characteristic of gravity not unique to Earth, as astronaut David R. Scott demonstrated in 1971 on the Moon, where the
acceleration from gravity is only 1.67 m/s2 and there is no atmosphere.

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of the same size. A tennis ball
reaches the ground after a baseball dropped at the same time. (It might be difficult to observe the difference if the height is
not large.) Air resistance opposes the motion of an object through the air, and friction between objects—such as between
clothes and a laundry chute or between a stone and a pool into which it is dropped—also opposes motion between them.

For the ideal situations of these first few chapters, an object falling without air resistance or friction is defined to be in
free fall. The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-falling objects
is therefore called acceleration due to gravity. Acceleration due to gravity is constant, which means we can apply the
kinematic equations to any falling object where air resistance and friction are negligible. This opens to us a broad class of
interesting situations.

Acceleration due to gravity is so important that its magnitude is given its own symbol, g. It is constant at any given location
on Earth and has the average value

g = 9.81 m/s2 (or 32.2 ft/s2).

Although g varies from 9.78 m/s2 to 9.83 m/s2, depending on latitude, altitude, underlying geological formations, and
local topography, let’s use an average value of 9.8 m/s2 rounded to two significant figures in this text unless specified
otherwise. Neglecting these effects on the value of g as a result of position on Earth’s surface, as well as effects resulting
from Earth’s rotation, we take the direction of acceleration due to gravity to be downward (toward the center of Earth).
In fact, its direction defines what we call vertical. Note that whether acceleration a in the kinematic equations has the
value +g or −g depends on how we define our coordinate system. If we define the upward direction as positive, then

a = −g = −9.8 m/s2, and if we define the downward direction as positive, then a = g = 9.8 m/s2 .

One-Dimensional Motion Involving Gravity
The best way to see the basic features of motion involving gravity is to start with the simplest situations and then progress
toward more complex ones. So, we start by considering straight up-and-down motion with no air resistance or friction.
These assumptions mean the velocity (if there is any) is vertical. If an object is dropped, we know the initial velocity is zero
when in free fall. When the object has left contact with whatever held or threw it, the object is in free fall. When the object
is thrown, it has the same initial speed in free fall as it did before it was released. When the object comes in contact with the
ground or any other object, it is no longer in free fall and its acceleration of g is no longer valid. Under these circumstances,
the motion is one-dimensional and has constant acceleration of magnitude g. We represent vertical displacement with the
symbol y.
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Kinematic Equations for Objects in Free Fall

We assume here that acceleration equals −g (with the positive direction upward).

(3.15)v = v0 − gt
(3.16)y = y0 + v0 t − 1

2gt2

(3.17)v2 = v0
2 − 2g(y − y0)

Problem-Solving Strategy: Free Fall

1. Decide on the sign of the acceleration of gravity. In Equation 3.15 through Equation 3.17, acceleration
g is negative, which says the positive direction is upward and the negative direction is downward. In some
problems, it may be useful to have acceleration g as positive, indicating the positive direction is downward.

2. Draw a sketch of the problem. This helps visualize the physics involved.

3. Record the knowns and unknowns from the problem description. This helps devise a strategy for selecting the
appropriate equations to solve the problem.

4. Decide which of Equation 3.15 through Equation 3.17 are to be used to solve for the unknowns.

Example 3.14

Free Fall of a Ball

Figure 3.27 shows the positions of a ball, at 1-s intervals, with an initial velocity of 4.9 m/s downward, that is
thrown from the top of a 98-m-high building. (a) How much time elapses before the ball reaches the ground? (b)
What is the velocity when it arrives at the ground?

Figure 3.27 The positions and velocities at 1-s intervals of a
ball thrown downward from a tall building at 4.9 m/s.

Strategy

Choose the origin at the top of the building with the positive direction upward and the negative direction
downward. To find the time when the position is −98 m, we use Equation 3.16, with

y0 = 0, v0 = −4.9 m/s, and g = 9.8 m/s2 .

Solution
a. Substitute the given values into the equation:
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y = y0 + v0 t − 1
2gt2

−98.0 m = 0 − (4.9 m/s)t − 1
2(9.8 m/s2)t2.

This simplifies to

t2 + t − 20 = 0.

This is a quadratic equation with roots t = −5.0s and t = 4.0s . The positive root is the one we are

interested in, since time t = 0 is the time when the ball is released at the top of the building. (The time

t = −5.0s represents the fact that a ball thrown upward from the ground would have been in the air for

5.0 s when it passed by the top of the building moving downward at 4.9 m/s.)

b. Using Equation 3.15, we have

v = v0 − gt = −4.9 m/s − (9.8m/s2)(4.0 s) = −44.1 m/s.

Significance

For situations when two roots are obtained from a quadratic equation in the time variable, we must look at the
physical significance of both roots to determine which is correct. Since t = 0 corresponds to the time when

the ball was released, the negative root would correspond to a time before the ball was released, which is not
physically meaningful. When the ball hits the ground, its velocity is not immediately zero, but as soon as the ball
interacts with the ground, its acceleration is not g and it accelerates with a different value over a short time to zero
velocity. This problem shows how important it is to establish the correct coordinate system and to keep the signs
of g in the kinematic equations consistent.

Example 3.15

Vertical Motion of a Baseball

A batter hits a baseball straight upward at home plate and the ball is caught 5.0 s after it is struck Figure 3.28.
(a) What is the initial velocity of the ball? (b) What is the maximum height the ball reaches? (c) How long does it
take to reach the maximum height? (d) What is the acceleration at the top of its path? (e) What is the velocity of
the ball when it is caught? Assume the ball is hit and caught at the same location.

Figure 3.28 A baseball hit straight up is caught by the catcher 5.0 s later.
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Strategy

Choose a coordinate system with a positive y-axis that is straight up and with an origin that is at the spot where
the ball is hit and caught.

Solution
a. Equation 3.16 gives

y = y0 + v0 t − 1
2gt2

0 = 0 + v0(5.0 s) − 1
2

⎛
⎝9.8 m/s2⎞

⎠(5.0 s)2,

which gives v0 = 24.5 m/sec .

b. At the maximum height, v = 0 . With v0 = 24.5 m/s , Equation 3.17 gives

v2 = v0
2 − 2g(y − y0)

0 = (24.5 m/s)2 − 2(9.8m/s2)(y − 0)

or

y = 30.6 m.
c. To find the time when v = 0 , we use Equation 3.15:

v = v0 − gt

0 = 24.5 m/s − (9.8m/s2)t.

This gives t = 2.5 s . Since the ball rises for 2.5 s, the time to fall is 2.5 s.

d. The acceleration is 9.8 m/s2 everywhere, even when the velocity is zero at the top of the path. Although
the velocity is zero at the top, it is changing at the rate of 9.8 m/s2 downward.

e. The velocity at t = 5.0s can be determined with Equation 3.15:

v = v0 − gt

= 24.5 m/s − 9.8m/s2(5.0 s)
= −24.5 m/s.

Significance

The ball returns with the speed it had when it left. This is a general property of free fall for any initial velocity. We
used a single equation to go from throw to catch, and did not have to break the motion into two segments, upward
and downward. We are used to thinking of the effect of gravity is to create free fall downward toward Earth. It is
important to understand, as illustrated in this example, that objects moving upward away from Earth are also in a
state of free fall.

Check Your Understanding A chunk of ice breaks off a glacier and falls 30.0 m before it hits the water.
Assuming it falls freely (there is no air resistance), how long does it take to hit the water? Which quantity
increases faster, the speed of the ice chunk or its distance traveled?
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Example 3.16

Rocket Booster

A small rocket with a booster blasts off and heads straight upward. When at a height of 5.0 km and velocity of

200.0 m/s, it releases its booster. (a) What is the maximum height the booster attains? (b) What is the velocity of
the booster at a height of 6.0 km? Neglect air resistance.

Figure 3.29 A rocket releases its booster at a given height and
velocity. How high and how fast does the booster go?

Strategy

We need to select the coordinate system for the acceleration of gravity, which we take as negative downward. We
are given the initial velocity of the booster and its height. We consider the point of release as the origin. We know
the velocity is zero at the maximum position within the acceleration interval; thus, the velocity of the booster is
zero at its maximum height, so we can use this information as well. From these observations, we use Equation
3.17, which gives us the maximum height of the booster. We also use Equation 3.17 to give the velocity at 6.0
km. The initial velocity of the booster is 200.0 m/s.

Solution

a. From Equation 3.17, v2 = v0
2 − 2g(y − y0) . With v = 0 and y0 = 0 , we can solve for y:

y =
v0

2

−2g = (2.0 × 102 m/s)2

−2(9.8 m/s2)
= 2040.8 m.

This solution gives the maximum height of the booster in our coordinate system, which has its origin at
the point of release, so the maximum height of the booster is roughly 7.0 km.

b. An altitude of 6.0 km corresponds to y = 1.0 × 103 m in the coordinate system we are using. The other
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initial conditions are y0 = 0, and v0 = 200.0 m/s .

We have, from Equation 3.17,

v2 = (200.0 m/s)2 − 2(9.8 m/s2)(1.0 × 103 m) ⇒ v = ± 142.8 m/s.

Significance

We have both a positive and negative solution in (b). Since our coordinate system has the positive direction
upward, the +142.8 m/s corresponds to a positive upward velocity at 6000 m during the upward leg of the
trajectory of the booster. The value v = −142.8 m/s corresponds to the velocity at 6000 m on the downward leg.
This example is also important in that an object is given an initial velocity at the origin of our coordinate system,
but the origin is at an altitude above the surface of Earth, which must be taken into account when forming the
solution.

Visit this site (https://openstaxcollege.org/l/21equatgraph) to learn about graphing polynomials. The
shape of the curve changes as the constants are adjusted. View the curves for the individual terms (for example, y
= bx) to see how they add to generate the polynomial curve.

3.6 | Finding Velocity and Displacement from Acceleration

Learning Objectives

By the end of this section, you will be able to:

• Derive the kinematic equations for constant acceleration using integral calculus.

• Use the integral formulation of the kinematic equations in analyzing motion.

• Find the functional form of velocity versus time given the acceleration function.

• Find the functional form of position versus time given the velocity function.

This section assumes you have enough background in calculus to be familiar with integration. In Instantaneous Velocity
and Speed and Average and Instantaneous Acceleration we introduced the kinematic functions of velocity and
acceleration using the derivative. By taking the derivative of the position function we found the velocity function, and
likewise by taking the derivative of the velocity function we found the acceleration function. Using integral calculus, we
can work backward and calculate the velocity function from the acceleration function, and the position function from the
velocity function.

Kinematic Equations from Integral Calculus
Let’s begin with a particle with an acceleration a(t) is a known function of time. Since the time derivative of the velocity
function is acceleration,

d
dtv(t) = a(t),

we can take the indefinite integral of both sides, finding

⌠
⌡

d
dtv(t)dt = ∫ a(t)dt + C1,

where C1 is a constant of integration. Since ⌠
⌡

d
dtv(t)dt = v(t) , the velocity is given by

(3.18)v(t) = ∫ a(t)dt + C1.

Similarly, the time derivative of the position function is the velocity function,
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d
dtx(t) = v(t).

Thus, we can use the same mathematical manipulations we just used and find

(3.19)x(t) = ∫ v(t)dt + C2,

where C2 is a second constant of integration.

We can derive the kinematic equations for a constant acceleration using these integrals. With a(t) = a a constant, and doing
the integration in Equation 3.18, we find

v(t) = ∫ adt + C1 = at + C1.

If the initial velocity is v(0) = v0, then

v0 = 0 + C1.

Then, C1 = v0 and

v(t) = v0 + at,

which is Equation 3.12. Substituting this expression into Equation 3.19 gives

x(t) = ∫ (v0 + at)dt + C2.

Doing the integration, we find

x(t) = v0 t + 1
2at2 + C2.

If x(0) = x0, we have

x0 = 0 + 0 + C2;

so, C2 = x0. Substituting back into the equation for x(t), we finally have

x(t) = x0 + v0 t + 1
2at2,

which is Equation 3.13.

Example 3.17

Motion of a Motorboat

A motorboat is traveling at a constant velocity of 5.0 m/s when it starts to decelerate to arrive at the dock. Its

acceleration is a(t) = − 1
4t m/s2 . (a) What is the velocity function of the motorboat? (b) At what time does

the velocity reach zero? (c) What is the position function of the motorboat? (d) What is the displacement of the
motorboat from the time it begins to decelerate to when the velocity is zero? (e) Graph the velocity and position
functions.

Strategy

(a) To get the velocity function we must integrate and use initial conditions to find the constant of integration.
(b) We set the velocity function equal to zero and solve for t. (c) Similarly, we must integrate to find the position
function and use initial conditions to find the constant of integration. (d) Since the initial position is taken to be
zero, we only have to evaluate the position function at t = 0 .

Solution

We take t = 0 to be the time when the boat starts to decelerate.
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a. From the functional form of the acceleration we can solve Equation 3.18 to get v(t):

v(t) = ⌠
⌡
a(t)dt + C1 = ⌠

⌡
−1

4tdt + C1 = − 1
8t2 + C1.

At t = 0 we have v(0) = 5.0 m/s = 0 + C1, so C1 = 5.0 m/s or v(t) = 5.0 m/s − 1
8t2 .

b. v(t) = 0 = 5.0 m/s − 1
8t2 ⇒ t = 6.3 s

c. Solve Equation 3.19:

x(t) = ∫ v(t)dt + C2 = ⌠
⌡
(5.0 − 1

8t2)dt + C2 = 5.0t − 1
24t3 + C2.

At t = 0, we set x(0) = 0 = x0, since we are only interested in the displacement from when the boat starts
to decelerate. We have

x(0) = 0 = C2.

Therefore, the equation for the position is

x(t) = 5.0t − 1
24t3.

d. Since the initial position is taken to be zero, we only have to evaluate x(t) when the velocity is zero. This
occurs at t = 6.3 s. Therefore, the displacement is

x(6.3) = 5.0(6.3) − 1
24(6.3)3 = 21.1 m.

Figure 3.30 (a) Velocity of the motorboat as a function of time. The motorboat decreases its velocity to zero in
6.3 s. At times greater than this, velocity becomes negative—meaning, the boat is reversing direction. (b) Position
of the motorboat as a function of time. At t = 6.3 s, the velocity is zero and the boat has stopped. At times greater
than this, the velocity becomes negative—meaning, if the boat continues to move with the same acceleration, it
reverses direction and heads back toward where it originated.

Significance

The acceleration function is linear in time so the integration involves simple polynomials. In Figure 3.30, we
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3.8

see that if we extend the solution beyond the point when the velocity is zero, the velocity becomes negative and
the boat reverses direction. This tells us that solutions can give us information outside our immediate interest and
we should be careful when interpreting them.

Check Your Understanding A particle starts from rest and has an acceleration function 5 − 10tm/s2 .

(a) What is the velocity function? (b) What is the position function? (c) When is the velocity zero?
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acceleration due to gravity

average acceleration

average speed

average velocity

displacement

distance traveled

elapsed time

free fall

instantaneous acceleration

instantaneous speed

instantaneous velocity

kinematics

position

total displacement

two-body pursuit problem

CHAPTER 3 REVIEW

KEY TERMS
acceleration of an object as a result of gravity

the rate of change in velocity; the change in velocity over time

the total distance traveled divided by elapsed time

the displacement divided by the time over which displacement occurs

the change in position of an object

the total length of the path traveled between two positions

the difference between the ending time and the beginning time

the state of movement that results from gravitational force only

acceleration at a specific point in time

the absolute value of the instantaneous velocity

the velocity at a specific instant or time point

the description of motion through properties such as position, time, velocity, and acceleration

the location of an object at a particular time

the sum of individual displacements over a given time period

a kinematics problem in which the unknowns are calculated by solving the kinematic
equations simultaneously for two moving objects

KEY EQUATIONS
Displacement Δx = xf − xi

Total displacement ΔxTotal = ∑ Δxi

Average velocity v– = Δx
Δt = x2 − x1

t2 − t1

Instantaneous velocity v(t) = dx(t)
dt

Average speed Average speed = s– = Total distance
Elapsed time

Instantaneous speed Instantaneous speed = |v(t)|

Average acceleration a– = Δv
Δt =

v f − v0
t f − t0

Instantaneous acceleration a(t) = dv(t)
dt

Position from average velocity x = x0 + v–t

Average velocity v– = v0 + v
2

Velocity from acceleration v = v0 + at (constant a)
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Position from velocity and acceleration x = x0 + v0 t + 1
2at2 (constant a)

Velocity from distance v2 = v0
2 + 2a(x − x0) (constant a)

Velocity of free fall v = v0 − gt (positive upward)

Height of free fall y = y0 + v0 t − 1
2gt2

Velocity of free fall from height v2 = v0
2 − 2g(y − y0)

Velocity from acceleration v(t) = ∫ a(t)dt + C1

Position from velocity x(t) = ∫ v(t)dt + C2

SUMMARY

3.1 Position, Displacement, and Average Velocity

• Kinematics is the description of motion without considering its causes. In this chapter, it is limited to motion along
a straight line, called one-dimensional motion.

• Displacement is the change in position of an object. The SI unit for displacement is the meter. Displacement has
direction as well as magnitude.

• Distance traveled is the total length of the path traveled between two positions.

• Time is measured in terms of change. The time between two position points x1 and x2 is Δt = t2 − t1 . Elapsed

time for an event is Δt = tf − t0 , where tf is the final time and t0 is the initial time. The initial time is often taken

to be zero.

• Average velocity v– is defined as displacement divided by elapsed time. If x1, t1 and x2, t2 are two position time

points, the average velocity between these points is

v– = Δx
Δt = x2 − x1

t2 − t1
.

3.2 Instantaneous Velocity and Speed

• Instantaneous velocity is a continuous function of time and gives the velocity at any point in time during a particle’s
motion. We can calculate the instantaneous velocity at a specific time by taking the derivative of the position
function, which gives us the functional form of instantaneous velocity v(t).

• Instantaneous velocity is a vector and can be negative.

• Instantaneous speed is found by taking the absolute value of instantaneous velocity, and it is always positive.

• Average speed is total distance traveled divided by elapsed time.

• The slope of a position-versus-time graph at a specific time gives instantaneous velocity at that time.

3.3 Average and Instantaneous Acceleration

• Acceleration is the rate at which velocity changes. Acceleration is a vector; it has both a magnitude and direction.
The SI unit for acceleration is meters per second squared.

• Acceleration can be caused by a change in the magnitude or the direction of the velocity, or both.

• Instantaneous acceleration a(t) is a continuous function of time and gives the acceleration at any specific time during
the motion. It is calculated from the derivative of the velocity function. Instantaneous acceleration is the slope of
the velocity-versus-time graph.
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• Negative acceleration (sometimes called deceleration) is acceleration in the negative direction in the chosen
coordinate system.

3.4 Motion with Constant Acceleration

• When analyzing one-dimensional motion with constant acceleration, identify the known quantities and choose the
appropriate equations to solve for the unknowns. Either one or two of the kinematic equations are needed to solve
for the unknowns, depending on the known and unknown quantities.

• Two-body pursuit problems always require two equations to be solved simultaneously for the unknowns.

3.5 Free Fall

• An object in free fall experiences constant acceleration if air resistance is negligible.

• On Earth, all free-falling objects have an acceleration g due to gravity, which averages g = 9.81 m/s2 .

• For objects in free fall, the upward direction is normally taken as positive for displacement, velocity, and
acceleration.

3.6 Finding Velocity and Displacement from Acceleration

• Integral calculus gives us a more complete formulation of kinematics.

• If acceleration a(t) is known, we can use integral calculus to derive expressions for velocity v(t) and position x(t).

• If acceleration is constant, the integral equations reduce to Equation 3.12 and Equation 3.13 for motion with
constant acceleration.

CONCEPTUAL QUESTIONS

3.1 Position, Displacement, and Average

Velocity

1. Give an example in which there are clear distinctions
among distance traveled, displacement, and magnitude of
displacement. Identify each quantity in your example
specifically.

2. Under what circumstances does distance traveled equal
magnitude of displacement? What is the only case in which
magnitude of displacement and displacement are exactly
the same?

3. Bacteria move back and forth using their flagella
(structures that look like little tails). Speeds of up to 50 μm/
s (50 × 10−6 m/s) have been observed. The total distance
traveled by a bacterium is large for its size, whereas its
displacement is small. Why is this?

4. Give an example of a device used to measure time and
identify what change in that device indicates a change in
time.

5. Does a car’s odometer measure distance traveled or
displacement?

6. During a given time interval the average velocity of
an object is zero. What can you say conclude about its

displacement over the time interval?

3.2 Instantaneous Velocity and Speed

7. There is a distinction between average speed and the
magnitude of average velocity. Give an example that
illustrates the difference between these two quantities.

8. Does the speedometer of a car measure speed or
velocity?

9. If you divide the total distance traveled on a car trip
(as determined by the odometer) by the elapsed time of
the trip, are you calculating average speed or magnitude of
average velocity? Under what circumstances are these two
quantities the same?

10. How are instantaneous velocity and instantaneous
speed related to one another? How do they differ?

3.3 Average and Instantaneous Acceleration

11. Is it possible for speed to be constant while
acceleration is not zero?

12. Is it possible for velocity to be constant while
acceleration is not zero? Explain.
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13. Give an example in which velocity is zero yet
acceleration is not.

14. If a subway train is moving to the left (has a negative
velocity) and then comes to a stop, what is the direction of
its acceleration? Is the acceleration positive or negative?

15. Plus and minus signs are used in one-dimensional
motion to indicate direction. What is the sign of an
acceleration that reduces the magnitude of a negative
velocity? Of a positive velocity?

3.4 Motion with Constant Acceleration

16. When analyzing the motion of a single object, what
is the required number of known physical variables that
are needed to solve for the unknown quantities using the
kinematic equations?

17. State two scenarios of the kinematics of single object
where three known quantities require two kinematic
equations to solve for the unknowns.

3.5 Free Fall

18. What is the acceleration of a rock thrown straight
upward on the way up? At the top of its flight? On the way
down? Assume there is no air resistance.

19. An object that is thrown straight up falls back to Earth.
This is one-dimensional motion. (a) When is its velocity

zero? (b) Does its velocity change direction? (c) Does the
acceleration have the same sign on the way up as on the
way down?

20. Suppose you throw a rock nearly straight up at a
coconut in a palm tree and the rock just misses the coconut
on the way up but hits the coconut on the way down.
Neglecting air resistance and the slight horizontal variation
in motion to account for the hit and miss of the coconut,
how does the speed of the rock when it hits the coconut
on the way down compare with what it would have been if
it had hit the coconut on the way up? Is it more likely to
dislodge the coconut on the way up or down? Explain.

21. The severity of a fall depends on your speed when
you strike the ground. All factors but the acceleration from
gravity being the same, how many times higher could a safe
fall on the Moon than on Earth (gravitational acceleration
on the Moon is about one-sixth that of the Earth)?

22. How many times higher could an astronaut jump on
the Moon than on Earth if her takeoff speed is the same
in both locations (gravitational acceleration on the Moon is
about on-sixth of that on Earth)?

3.6 Finding Velocity and Displacement from

Acceleration

23. When given the acceleration function, what additional
information is needed to find the velocity function and
position function?

PROBLEMS

3.1 Position, Displacement, and Average

Velocity

24. Consider a coordinate system in which the positive x
axis is directed upward vertically. What are the positions of
a particle (a) 5.0 m directly above the origin and (b) 2.0 m
below the origin?

25. A car is 2.0 km west of a traffic light at t = 0 and 5.0
km east of the light at t = 6.0 min. Assume the origin of the
coordinate system is the light and the positive x direction
is eastward. (a) What are the car’s position vectors at these
two times? (b) What is the car’s displacement between 0
min and 6.0 min?

26. The Shanghai maglev train connects Longyang Road
to Pudong International Airport, a distance of 30 km. The
journey takes 8 minutes on average. What is the maglev
train’s average velocity?

27. The position of a particle moving along the x-axis is
given by x(t) = 4.0 − 2.0t m. (a) At what time does the

particle cross the origin? (b) What is the displacement of
the particle between t = 3.0 s and t = 6.0 s?

28. A cyclist rides 8.0 km east for 20 minutes, then he
turns and heads west for 8 minutes and 3.2 km. Finally,
he rides east for 16 km, which takes 40 minutes. (a) What
is the final displacement of the cyclist? (b) What is his
average velocity?

29. On February 15, 2013, a superbolide meteor (brighter
than the Sun) entered Earth’s atmosphere over
Chelyabinsk, Russia, and exploded at an altitude of 23.5
km. Eyewitnesses could feel the intense heat from the
fireball, and the blast wave from the explosion blew out
windows in buildings. The blast wave took approximately 2
minutes 30 seconds to reach ground level. (a) What was the
average velocity of the blast wave? b) Compare this with
the speed of sound, which is 343 m/s at sea level.
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3.2 Instantaneous Velocity and Speed

30. A woodchuck runs 20 m to the right in 5 s, then turns
and runs 10 m to the left in 3 s. (a) What is the average
velocity of the woodchuck? (b) What is its average speed?

31. Sketch the velocity-versus-time graph from the
following position-versus-time graph.

32. Sketch the velocity-versus-time graph from the
following position-versus-time graph.

33. Given the following velocity-versus-time graph,
sketch the position-versus-time graph.

34. An object has a position function x(t) = 5t m. (a) What
is the velocity as a function of time? (b) Graph the position
function and the velocity function.

35. A particle moves along the x-axis according to

x(t) = 10t − 2t2 m . (a) What is the instantaneous velocity

at t = 2 s and t = 3 s? (b) What is the instantaneous speed at
these times? (c) What is the average velocity between t = 2
s and t = 3 s?

36. Unreasonable results. A particle moves along the

x-axis according to x(t) = 3t3 + 5t . At what time is the

velocity of the particle equal to zero? Is this reasonable?

3.3 Average and Instantaneous Acceleration

37. A cheetah can accelerate from rest to a speed of 30.0
m/s in 7.00 s. What is its acceleration?

38. Dr. John Paul Stapp was a U.S. Air Force officer who
studied the effects of extreme acceleration on the human
body. On December 10, 1954, Stapp rode a rocket sled,
accelerating from rest to a top speed of 282 m/s (1015
km/h) in 5.00 s and was brought jarringly back to rest in
only 1.40 s. Calculate his (a) acceleration in his direction
of motion and (b) acceleration opposite to his direction
of motion. Express each in multiples of g (9.80 m/s2) by
taking its ratio to the acceleration of gravity.

39. Sketch the acceleration-versus-time graph from the
following velocity-versus-time graph.
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40. A commuter backs her car out of her garage with an
acceleration of 1.40 m/s2. (a) How long does it take her to
reach a speed of 2.00 m/s? (b) If she then brakes to a stop
in 0.800 s, what is her acceleration?

41. Assume an intercontinental ballistic missile goes from
rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual
speed and time are classified). What is its average
acceleration in meters per second and in multiples of g
(9.80 m/s2)?

42. An airplane, starting from rest, moves down the
runway at constant acceleration for 18 s and then takes off
at a speed of 60 m/s. What is the average acceleration of the
plane?

3.4 Motion with Constant Acceleration

43. A particle moves in a straight line at a constant
velocity of 30 m/s. What is its displacement between t = 0
and t = 5.0 s?

44. A particle moves in a straight line with an initial
velocity of 30 m/s and a constant acceleration of 30 m/s2. If
at t = 0, x = 0 and v = 0 , what is the particle’s position

at t = 5 s?

45. A particle moves in a straight line with an initial
velocity of 30 m/s and constant acceleration 30 m/s2. (a)
What is its displacement at t = 5 s? (b) What is its velocity
at this same time?

46. (a) Sketch a graph of velocity versus time
corresponding to the graph of displacement versus time
given in the following figure. (b) Identify the time or times
(ta, tb, tc, etc.) at which the instantaneous velocity has the
greatest positive value. (c) At which times is it zero? (d) At

which times is it negative?

47. (a) Sketch a graph of acceleration versus time
corresponding to the graph of velocity versus time given in
the following figure. (b) Identify the time or times (ta, tb,
tc, etc.) at which the acceleration has the greatest positive
value. (c) At which times is it zero? (d) At which times is it
negative?

48. A particle has a constant acceleration of 6.0 m/s2.
(a) If its initial velocity is 2.0 m/s, at what time is its
displacement 5.0 m? (b) What is its velocity at that time?

49. At t = 10 s, a particle is moving from left to right
with a speed of 5.0 m/s. At t = 20 s, the particle is moving
right to left with a speed of 8.0 m/s. Assuming the particle’s
acceleration is constant, determine (a) its acceleration, (b)
its initial velocity, and (c) the instant when its velocity is
zero.

50. A well-thrown ball is caught in a well-padded mitt. If

the acceleration of the ball is 2.10 × 104 m/s2 , and 1.85

ms (1 ms = 10−3 s) elapses from the time the ball first

touches the mitt until it stops, what is the initial velocity of
the ball?

51. A bullet in a gun is accelerated from the firing
chamber to the end of the barrel at an average rate of

6.20 × 105 m/s2 for 8.10 × 10−4 s . What is its muzzle

velocity (that is, its final velocity)?
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52. (a) A light-rail commuter train accelerates at a rate of
1.35 m/s2. How long does it take to reach its top speed of
80.0 km/h, starting from rest? (b) The same train ordinarily
decelerates at a rate of 1.65 m/s2. How long does it take
to come to a stop from its top speed? (c) In emergencies,
the train can decelerate more rapidly, coming to rest from
80.0 km/h in 8.30 s. What is its emergency acceleration in
meters per second squared?

53. While entering a freeway, a car accelerates from rest
at a rate of 2.04 m/s2 for 12.0 s. (a) Draw a sketch of the
situation. (b) List the knowns in this problem. (c) How
far does the car travel in those 12.0 s? To solve this part,
first identify the unknown, then indicate how you chose
the appropriate equation to solve for it. After choosing
the equation, show your steps in solving for the unknown,
check your units, and discuss whether the answer is
reasonable. (d) What is the car’s final velocity? Solve for
this unknown in the same manner as in (c), showing all
steps explicitly.

54. Unreasonable results At the end of a race, a runner
decelerates from a velocity of 9.00 m/s at a rate of 2.00 m/
s2. (a) How far does she travel in the next 5.00 s? (b) What
is her final velocity? (c) Evaluate the result. Does it make
sense?

55. Blood is accelerated from rest to 30.0 cm/s in a
distance of 1.80 cm by the left ventricle of the heart. (a)
Make a sketch of the situation. (b) List the knowns in
this problem. (c) How long does the acceleration take? To
solve this part, first identify the unknown, then discuss how
you chose the appropriate equation to solve for it. After
choosing the equation, show your steps in solving for the
unknown, checking your units. (d) Is the answer reasonable
when compared with the time for a heartbeat?

56. During a slap shot, a hockey player accelerates the
puck from a velocity of 8.00 m/s to 40.0 m/s in the same

direction. If this shot takes 3.33 × 10−2 s , what is the

distance over which the puck accelerates?

57. A powerful motorcycle can accelerate from rest to
26.8 m/s (100 km/h) in only 3.90 s. (a) What is its average
acceleration? (b) How far does it travel in that time?

58. Freight trains can produce only relatively small
accelerations. (a) What is the final velocity of a freight train

that accelerates at a rate of 0.0500 m/s2 for 8.00 min,

starting with an initial velocity of 4.00 m/s? (b) If the train

can slow down at a rate of 0.550 m/s2 , how long will it

take to come to a stop from this velocity? (c) How far will
it travel in each case?

59. A fireworks shell is accelerated from rest to a velocity
of 65.0 m/s over a distance of 0.250 m. (a) Calculate the

acceleration. (b) How long did the acceleration last?

60. A swan on a lake gets airborne by flapping its wings
and running on top of the water. (a) If the swan must reach
a velocity of 6.00 m/s to take off and it accelerates from

rest at an average rate of 0.35 m/s2 , how far will it travel

before becoming airborne? (b) How long does this take?

61. A woodpecker’s brain is specially protected from large
accelerations by tendon-like attachments inside the skull.
While pecking on a tree, the woodpecker’s head comes to
a stop from an initial velocity of 0.600 m/s in a distance
of only 2.00 mm. (a) Find the acceleration in meters per
second squared and in multiples of g, where g = 9.80 m/
s2. (b) Calculate the stopping time. (c) The tendons cradling
the brain stretch, making its stopping distance 4.50 mm
(greater than the head and, hence, less acceleration of the
brain). What is the brain’s acceleration, expressed in
multiples of g?

62. An unwary football player collides with a padded
goalpost while running at a velocity of 7.50 m/s and comes
to a full stop after compressing the padding and his body
0.350 m. (a) What is his acceleration? (b) How long does
the collision last?

63. A care package is dropped out of a cargo plane and
lands in the forest. If we assume the care package speed on
impact is 54 m/s (123 mph), then what is its acceleration?
Assume the trees and snow stops it over a distance of 3.0
m.

64. An express train passes through a station. It enters
with an initial velocity of 22.0 m/s and decelerates at a rate

of 0.150 m/s2 as it goes through. The station is 210.0 m

long. (a) How fast is it going when the nose leaves the
station? (b) How long is the nose of the train in the station?
(c) If the train is 130 m long, what is the velocity of the end
of the train as it leaves? (d) When does the end of the train
leave the station?

65. Unreasonable results Dragsters can actually reach a
top speed of 145.0 m/s in only 4.45 s. (a) Calculate the
average acceleration for such a dragster. (b) Find the final
velocity of this dragster starting from rest and accelerating
at the rate found in (a) for 402.0 m (a quarter mile) without
using any information on time. (c) Why is the final velocity
greater than that used to find the average acceleration?
(Hint: Consider whether the assumption of constant
acceleration is valid for a dragster. If not, discuss whether
the acceleration would be greater at the beginning or end
of the run and what effect that would have on the final
velocity.)
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3.5 Free Fall

66. Calculate the displacement and velocity at times of
(a) 0.500 s, (b) 1.00 s, (c) 1.50 s, and (d) 2.00 s for a ball
thrown straight up with an initial velocity of 15.0 m/s. Take
the point of release to be y0 = 0 .

67. Calculate the displacement and velocity at times of (a)
0.500 s, (b) 1.00 s, (c) 1.50 s, (d) 2.00 s, and (e) 2.50 s for
a rock thrown straight down with an initial velocity of 14.0
m/s from the Verrazano Narrows Bridge in New York City.
The roadway of this bridge is 70.0 m above the water.

68. A basketball referee tosses the ball straight up for the
starting tip-off. At what velocity must a basketball player
leave the ground to rise 1.25 m above the floor in an
attempt to get the ball?

69. A rescue helicopter is hovering over a person whose
boat has sunk. One of the rescuers throws a life preserver
straight down to the victim with an initial velocity of 1.40
m/s and observes that it takes 1.8 s to reach the water. (a)
List the knowns in this problem. (b) How high above the
water was the preserver released? Note that the downdraft
of the helicopter reduces the effects of air resistance on the
falling life preserver, so that an acceleration equal to that of
gravity is reasonable.

70. Unreasonable results A dolphin in an aquatic show
jumps straight up out of the water at a velocity of 15.0
m/s. (a) List the knowns in this problem. (b) How high
does his body rise above the water? To solve this part, first
note that the final velocity is now a known, and identify
its value. Then, identify the unknown and discuss how
you chose the appropriate equation to solve for it. After
choosing the equation, show your steps in solving for the
unknown, checking units, and discuss whether the answer
is reasonable. (c) How long a time is the dolphin in the air?
Neglect any effects resulting from his size or orientation.

71. A diver bounces straight up from a diving board,
avoiding the diving board on the way down, and falls feet
first into a pool. She starts with a velocity of 4.00 m/s and
her takeoff point is 1.80 m above the pool. (a) What is her
highest point above the board? (b) How long a time are her
feet in the air? (c) What is her velocity when her feet hit the
water?

72. (a) Calculate the height of a cliff if it takes 2.35 s for
a rock to hit the ground when it is thrown straight up from
the cliff with an initial velocity of 8.00 m/s. (b) How long a
time would it take to reach the ground if it is thrown straight
down with the same speed?

73. A very strong, but inept, shot putter puts the shot
straight up vertically with an initial velocity of 11.0 m/s.

How long a time does he have to get out of the way if the
shot was released at a height of 2.20 m and he is 1.80 m
tall?

74. You throw a ball straight up with an initial velocity of
15.0 m/s. It passes a tree branch on the way up at a height
of 7.0 m. How much additional time elapses before the ball
passes the tree branch on the way back down?

75. A kangaroo can jump over an object 2.50 m high. (a)
Considering just its vertical motion, calculate its vertical
speed when it leaves the ground. (b) How long a time is it
in the air?

76. Standing at the base of one of the cliffs of Mt. Arapiles
in Victoria, Australia, a hiker hears a rock break loose from
a height of 105.0 m. He can’t see the rock right away, but
then does, 1.50 s later. (a) How far above the hiker is the
rock when he can see it? (b) How much time does he have
to move before the rock hits his head?

77. There is a 250-m-high cliff at Half Dome in Yosemite
National Park in California. Suppose a boulder breaks loose
from the top of this cliff. (a) How fast will it be going when
it strikes the ground? (b) Assuming a reaction time of 0.300
s, how long a time will a tourist at the bottom have to get
out of the way after hearing the sound of the rock breaking
loose (neglecting the height of the tourist, which would
become negligible anyway if hit)? The speed of sound is
335.0 m/s on this day.

3.6 Finding Velocity and Displacement from

Acceleration

78. The acceleration of a particle varies with time

according to the equation a(t) = pt2 − qt3 . Initially, the

velocity and position are zero. (a) What is the velocity as a
function of time? (b) What is the position as a function of
time?

79. Between t = 0 and t = t0, a rocket moves straight

upward with an acceleration given by a(t) = A − Bt1 /2 ,

where A and B are constants. (a) If x is in meters and t is
in seconds, what are the units of A and B? (b) If the rocket
starts from rest, how does the velocity vary between t =
0 and t = t0? (c) If its initial position is zero, what is the
rocket’s position as a function of time during this same time
interval?

80. The velocity of a particle moving along the x-axis

varies with time according to v(t) = A + Bt−1 , where A =

2 m/s, B = 0.25 m, and 1.0 s ≤ t ≤ 8.0 s . Determine the

acceleration and position of the particle at t = 2.0 s and t =
5.0 s. Assume that x(t = 1 s) = 0 .
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81. A particle at rest leaves the origin with its velocity
increasing with time according to v(t) = 3.2t m/s. At 5.0 s,
the particle’s velocity starts decreasing according to [16.0
– 1.5(t – 5.0)] m/s. This decrease continues until t = 11.0

s, after which the particle’s velocity remains constant at 7.0
m/s. (a) What is the acceleration of the particle as a function
of time? (b) What is the position of the particle at t = 2.0 s,
t = 7.0 s, and t = 12.0 s?

ADDITIONAL PROBLEMS

82. Professional baseball player Nolan Ryan could pitch
a baseball at approximately 160.0 km/h. At that average
velocity, how long did it take a ball thrown by Ryan to
reach home plate, which is 18.4 m from the pitcher’s
mound? Compare this with the average reaction time of a
human to a visual stimulus, which is 0.25 s.

83. An airplane leaves Chicago and makes the 3000-km
trip to Los Angeles in 5.0 h. A second plane leaves Chicago
one-half hour later and arrives in Los Angeles at the same
time. Compare the average velocities of the two planes.
Ignore the curvature of Earth and the difference in altitude
between the two cities.

84. Unreasonable Results A cyclist rides 16.0 km east,
then 8.0 km west, then 8.0 km east, then 32.0 km west,
and finally 11.2 km east. If his average velocity is 24 km/
h, how long did it take him to complete the trip? Is this a
reasonable time?

85. An object has an acceleration of +1.2 cm/s2 . At

t = 4.0 s , its velocity is −3.4 cm/s . Determine the

object’s velocities at t = 1.0 s and t = 6.0 s .

86. A particle moves along the x-axis according to the

equation x(t) = 2.0 − 4.0t2 m. What are the velocity and

acceleration at t = 2.0 s and t = 5.0 s?

87. A particle moving at constant acceleration has
velocities of 2.0 m/s at t = 2.0 s and −7.6 m/s at

t = 5.2 s. What is the acceleration of the particle?

88. A train is moving up a steep grade at constant velocity
(see following figure) when its caboose breaks loose and
starts rolling freely along the track. After 5.0 s, the caboose
is 30 m behind the train. What is the acceleration of the
caboose?

89. An electron is moving in a straight line with a velocity

of 4.0 × 105 m/s. It enters a region 5.0 cm long where it

undergoes an acceleration of 6.0 × 1012 m/s2 along the

same straight line. (a) What is the electron’s velocity when
it emerges from this region? b) How long does the electron
take to cross the region?

90. An ambulance driver is rushing a patient to the
hospital. While traveling at 72 km/h, she notices the traffic
light at the upcoming intersections has turned amber. To
reach the intersection before the light turns red, she must
travel 50 m in 2.0 s. (a) What minimum acceleration must
the ambulance have to reach the intersection before the
light turns red? (b) What is the speed of the ambulance
when it reaches the intersection?

91. A motorcycle that is slowing down uniformly covers
2.0 successive km in 80 s and 120 s, respectively. Calculate
(a) the acceleration of the motorcycle and (b) its velocity at
the beginning and end of the 2-km trip.

92. A cyclist travels from point A to point B in 10 min.
During the first 2.0 min of her trip, she maintains a uniform

acceleration of 0.090 m/s2 . She then travels at constant

velocity for the next 5.0 min. Next, she decelerates at a
constant rate so that she comes to a rest at point B 3.0 min
later. (a) Sketch the velocity-versus-time graph for the trip.
(b) What is the acceleration during the last 3 min? (c) How
far does the cyclist travel?

93. Two trains are moving at 30 m/s in opposite directions
on the same track. The engineers see simultaneously that
they are on a collision course and apply the brakes when
they are 1000 m apart. Assuming both trains have the same
acceleration, what must this acceleration be if the trains are
to stop just short of colliding?

94. A 10.0-m-long truck moving with a constant velocity
of 97.0 km/h passes a 3.0-m-long car moving with a
constant velocity of 80.0 km/h. How much time elapses
between the moment the front of the truck is even with the
back of the car and the moment the back of the truck is even
with the front of the car?
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95. A police car waits in hiding slightly off the highway.
A speeding car is spotted by the police car doing 40 m/s. At
the instant the speeding car passes the police car, the police
car accelerates from rest at 4 m/s2 to catch the speeding car.
How long does it take the police car to catch the speeding
car?

96. Pablo is running in a half marathon at a velocity of
3 m/s. Another runner, Jacob, is 50 meters behind Pablo
with the same velocity. Jacob begins to accelerate at 0.05
m/s2. (a) How long does it take Jacob to catch Pablo? (b)
What is the distance covered by Jacob? (c) What is the final
velocity of the Jacob?

97. Unreasonable results A runner approaches the finish
line and is 75 m away; her average speed at this position is
8 m/s. She decelerates at this point at 0.5 m/s2. How long
does it take her to cross the finish line from 75 m away? Is
this reasonable?

98. An airplane accelerates at 5.0 m/s2 for 30.0 s. During
this time, it covers a distance of 10.0 km. What are the
initial and final velocities of the airplane?

99. Compare the distance traveled of an object that
undergoes a change in velocity that is twice its initial
velocity with an object that changes its velocity by four
times its initial velocity over the same time period. The
accelerations of both objects are constant.

100. An object is moving east with a constant velocity and
is at position x0 at time t0 = 0 . (a) With what acceleration

must the object have for its total displacement to be zero at
a later time t ? (b) What is the physical interpretation of the
solution in the case for t → ∞ ?

101. A ball is thrown straight up. It passes a 2.00-m-high
window 7.50 m off the ground on its path up and takes
1.30 s to go past the window. What was the ball’s initial
velocity?

102. A coin is dropped from a hot-air balloon that is 300
m above the ground and rising at 10.0 m/s upward. For the
coin, find (a) the maximum height reached, (b) its position
and velocity 4.00 s after being released, and (c) the time
before it hits the ground.

103. A soft tennis ball is dropped onto a hard floor from
a height of 1.50 m and rebounds to a height of 1.10 m.
(a) Calculate its velocity just before it strikes the floor. (b)
Calculate its velocity just after it leaves the floor on its way
back up. (c) Calculate its acceleration during contact with

the floor if that contact lasts 3.50 ms (3.50 × 10−3 s) (d)

How much did the ball compress during its collision with
the floor, assuming the floor is absolutely rigid?

104. Unreasonable results. A raindrop falls from a cloud
100 m above the ground. Neglect air resistance. What is
the speed of the raindrop when it hits the ground? Is this a
reasonable number?

105. Compare the time in the air of a basketball player
who jumps 1.0 m vertically off the floor with that of a
player who jumps 0.3 m vertically.

106. Suppose that a person takes 0.5 s to react and move
his hand to catch an object he has dropped. (a) How far

does the object fall on Earth, where g = 9.8 m/s2? (b)

How far does the object fall on the Moon, where the
acceleration due to gravity is 1/6 of that on Earth?

107. A hot-air balloon rises from ground level at a
constant velocity of 3.0 m/s. One minute after liftoff, a
sandbag is dropped accidentally from the balloon.
Calculate (a) the time it takes for the sandbag to reach the
ground and (b) the velocity of the sandbag when it hits the
ground.

108. (a) A world record was set for the men’s 100-m dash
in the 2008 Olympic Games in Beijing by Usain Bolt of
Jamaica. Bolt “coasted” across the finish line with a time
of 9.69 s. If we assume that Bolt accelerated for 3.00 s to
reach his maximum speed, and maintained that speed for
the rest of the race, calculate his maximum speed and his
acceleration. (b) During the same Olympics, Bolt also set
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the world record in the 200-m dash with a time of 19.30 s.
Using the same assumptions as for the 100-m dash, what
was his maximum speed for this race?

109. An object is dropped from a height of 75.0 m above
ground level. (a) Determine the distance traveled during the
first second. (b) Determine the final velocity at which the
object hits the ground. (c) Determine the distance traveled
during the last second of motion before hitting the ground.

110. A steel ball is dropped onto a hard floor from a height
of 1.50 m and rebounds to a height of 1.45 m. (a) Calculate

its velocity just before it strikes the floor. (b) Calculate its
velocity just after it leaves the floor on its way back up.
(c) Calculate its acceleration during contact with the floor

if that contact lasts 0.0800 ms (8.00 × 10−5 s) (d) How

much did the ball compress during its collision with the
floor, assuming the floor is absolutely rigid?

111. An object is dropped from a roof of a building of
height h. During the last second of its descent, it drops a
distance h/3. Calculate the height of the building.

CHALLENGE PROBLEMS

112. In a 100-m race, the winner is timed at 11.2 s. The
second-place finisher’s time is 11.6 s. How far is the
second-place finisher behind the winner when she crosses
the finish line? Assume the velocity of each runner is
constant throughout the race.

113. The position of a particle moving along the x-axis

varies with time according to x(t) = 5.0t2 − 4.0t3 m. Find

(a) the velocity and acceleration of the particle as functions
of time, (b) the velocity and acceleration at t = 2.0 s, (c) the
time at which the position is a maximum, (d) the time at
which the velocity is zero, and (e) the maximum position.

114. A cyclist sprints at the end of a race to clinch a
victory. She has an initial velocity of 11.5 m/s and
accelerates at a rate of 0.500 m/s2 for 7.00 s. (a) What is her
final velocity? (b) The cyclist continues at this velocity to

the finish line. If she is 300 m from the finish line when she
starts to accelerate, how much time did she save? (c) The
second-place winner was 5.00 m ahead when the winner
started to accelerate, but he was unable to accelerate, and
traveled at 11.8 m/s until the finish line. What was the
difference in finish time in seconds between the winner
and runner-up? How far back was the runner-up when the
winner crossed the finish line?

115. In 1967, New Zealander Burt Munro set the world
record for an Indian motorcycle, on the Bonneville Salt
Flats in Utah, of 295.38 km/h. The one-way course was
8.00 km long. Acceleration rates are often described by the
time it takes to reach 96.0 km/h from rest. If this time was
4.00 s and Burt accelerated at this rate until he reached his
maximum speed, how long did it take Burt to complete the
course?

156 Chapter 3 | Motion Along a Straight Line

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5


