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Figure 14.1 This pressure map (left) and satellite photo (right) were used to model the path and impact of Hurricane Arthur as
it traveled up the East Coast of the United States in July 2014. Computer models use force and energy equations to predict
developing weather patterns. Scientists numerically integrate these time-dependent equations, along with the energy budgets of
long- and short-wave solar energy, to model changes in the atmosphere. The pressure map on the left was created using the
Weather Research and Forecasting Model designed at the National Center for Atmospheric Research. The colors represent the
height of the 850-mbar pressure surface. (credit left: modification of work by The National Center for Atmospheric Research;
credit right: modification of work by NRL Monterey Marine Meteorology Division, The National Oceanic and Atmospheric
Administration)
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Introduction
Picture yourself walking along a beach on the eastern shore of the United States. The air smells of sea salt and the sun warms
your body. Suddenly, an alert appears on your cell phone. A tropical depression has formed into a hurricane. Atmospheric
pressure has fallen to nearly 15% below average. As a result, forecasters expect torrential rainfall, winds in excess of 100
mph, and millions of dollars in damage. As you prepare to evacuate, you wonder: How can such a small drop in pressure
lead to such a severe change in the weather?

Pressure is a physical phenomenon that is responsible for much more than just the weather. Changes in pressure cause ears
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to “pop” during takeoff in an airplane. Changes in pressure can also cause scuba divers to suffer a sometimes fatal disorder
known as the “bends,” which occurs when nitrogen dissolved in the water of the body at extreme depths returns to a gaseous
state in the body as the diver surfaces. Pressure lies at the heart of the phenomena called buoyancy, which causes hot air
balloons to rise and ships to float. Before we can fully understand the role that pressure plays in these phenomena, we need
to discuss the states of matter and the concept of density.

14.1 | Fluids, Density, and Pressure

Learning Objectives

By the end of this section, you will be able to:

• State the different phases of matter

• Describe the characteristics of the phases of matter at the molecular or atomic level

• Distinguish between compressible and incompressible materials

• Define density and its related SI units

• Compare and contrast the densities of various substances

• Define pressure and its related SI units

• Explain the relationship between pressure and force

• Calculate force given pressure and area

Matter most commonly exists as a solid, liquid, or gas; these states are known as the three common phases of matter. We
will look at each of these phases in detail in this section.

Characteristics of Solids
Solids are rigid and have specific shapes and definite volumes. The atoms or molecules in a solid are in close proximity
to each other, and there is a significant force between these molecules. Solids will take a form determined by the nature
of these forces between the molecules. Although true solids are not incompressible, it nevertheless requires a large force
to change the shape of a solid. In some cases, the force between molecules can cause the molecules to organize into a
lattice as shown in Figure 14.2. The structure of this three-dimensional lattice is represented as molecules connected by
rigid bonds (modeled as stiff springs), which allow limited freedom for movement. Even a large force produces only small
displacements in the atoms or molecules of the lattice, and the solid maintains its shape. Solids also resist shearing forces.
(Shearing forces are forces applied tangentially to a surface, as described in Static Equilibrium and Elasticity.)

Characteristics of Fluids
Liquids and gases are considered to be fluids because they yield to shearing forces, whereas solids resist them. Like solids,
the molecules in a liquid are bonded to neighboring molecules, but possess many fewer of these bonds. The molecules in
a liquid are not locked in place and can move with respect to each other. The distance between molecules is similar to the
distances in a solid, and so liquids have definite volumes, but the shape of a liquid changes, depending on the shape of
its container. Gases are not bonded to neighboring atoms and can have large separations between molecules. Gases have
neither specific shapes nor definite volumes, since their molecules move to fill the container in which they are held (Figure
14.2).
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Figure 14.2 (a) Atoms in a solid are always in close contact with neighboring atoms, held in place by forces represented here
by springs. (b) Atoms in a liquid are also in close contact but can slide over one another. Forces between the atoms strongly resist
attempts to compress the atoms. (c) Atoms in a gas move about freely and are separated by large distances. A gas must be held in
a closed container to prevent it from expanding freely and escaping.

Liquids deform easily when stressed and do not spring back to their original shape once a force is removed. This occurs
because the atoms or molecules in a liquid are free to slide about and change neighbors. That is, liquids flow (so they are a
type of fluid), with the molecules held together by mutual attraction. When a liquid is placed in a container with no lid, it
remains in the container. Because the atoms are closely packed, liquids, like solids, resist compression; an extremely large
force is necessary to change the volume of a liquid.

In contrast, atoms in gases are separated by large distances, and the forces between atoms in a gas are therefore very weak,
except when the atoms collide with one another. This makes gases relatively easy to compress and allows them to flow
(which makes them fluids). When placed in an open container, gases, unlike liquids, will escape.

In this chapter, we generally refer to both gases and liquids simply as fluids, making a distinction between them only when
they behave differently. There exists one other phase of matter, plasma, which exists at very high temperatures. At high
temperatures, molecules may disassociate into atoms, and atoms disassociate into electrons (with negative charges) and
protons (with positive charges), forming a plasma. Plasma will not be discussed in depth in this chapter because plasma has
very different properties from the three other common phases of matter, discussed in this chapter, due to the strong electrical
forces between the charges.

Density
Suppose a block of brass and a block of wood have exactly the same mass. If both blocks are dropped in a tank of water,
why does the wood float and the brass sink (Figure 14.3)? This occurs because the brass has a greater density than water,
whereas the wood has a lower density than water.
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Figure 14.3 (a) A block of brass and a block of wood both have the same weight and mass, but the block of wood has a much
greater volume. (b) When placed in a fish tank filled with water, the cube of brass sinks and the block of wood floats. (The block
of wood is the same in both pictures; it was turned on its side to fit on the scale.)

Density is an important characteristic of substances. It is crucial, for example, in determining whether an object sinks or
floats in a fluid.

Density

The average density of a substance or object is defined as its mass per unit volume,

(14.1)ρ = m
V

where the Greek letter ρ (rho) is the symbol for density, m is the mass, and V is the volume.

The SI unit of density is kg/m3 . Table 14.1 lists some representative values. The cgs unit of density is the gram per cubic

centimeter, g/cm3 , where

1 g/cm3 = 1000 kg/m3.

The metric system was originally devised so that water would have a density of 1 g/cm3 , equivalent to 103 kg/m3 . Thus,

the basic mass unit, the kilogram, was first devised to be the mass of 1000 mL of water, which has a volume of 1000 cm3 .

Solids
( 0.0°C )

Liquids
( 0.0°C )

Gases
( 0.0°C, 101.3 kPa)

Substance ρ(kg/m3) Substance ρ(kg/m3) Substance ρ(kg/m3)

Aluminum 2.70 × 103 Benzene 8.79 × 102 Air 1.29 × 100

Bone 1.90 × 103 Blood 1.05 × 103 Carbon dioxide 1.98 × 100

Brass 8.44 × 103 Ethyl alcohol 8.06 × 102 Carbon monoxide 1.25 × 100

Table 14.1 Densities of Some Common Substances
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Solids
( 0.0°C )

Liquids
( 0.0°C )

Gases
( 0.0°C, 101.3 kPa)

Concrete 2.40 × 103 Gasoline 6.80 × 102 Helium 1.80 × 10−1

Copper 8.92 × 103 Glycerin 1.26 × 103 Hydrogen 9.00 × 10−2

Cork 2.40 × 102 Mercury 1.36 × 104 Methane 7.20 × 10−2

Earth’s crust 3.30 × 103 Olive oil 9.20 × 102 Nitrogen 1.25 × 100

Glass 2.60 × 103 Nitrous oxide 1.98 × 100

Gold 1.93 × 104 Oxygen 1.43 × 100

Granite 2.70 × 103

Iron 7.86 × 103

Lead 1.13 × 104

Oak 7.10 × 102

Pine 3.73 × 102

Platinum 2.14 × 104

Polystyrene 1.00 × 102

Tungsten 1.93 × 104

Uranium 1.87 × 103

Table 14.1 Densities of Some Common Substances

As you can see by examining Table 14.1, the density of an object may help identify its composition. The density of gold,
for example, is about 2.5 times the density of iron, which is about 2.5 times the density of aluminum. Density also reveals
something about the phase of the matter and its substructure. Notice that the densities of liquids and solids are roughly
comparable, consistent with the fact that their atoms are in close contact. The densities of gases are much less than those of
liquids and solids, because the atoms in gases are separated by large amounts of empty space. The gases are displayed for a
standard temperature of 0.0°C and a standard pressure of 101.3 kPa, and there is a strong dependence of the densities on

temperature and pressure. The densities of the solids and liquids displayed are given for the standard temperature of 0.0°C
and the densities of solids and liquids depend on the temperature. The density of solids and liquids normally increase with
decreasing temperature.

Table 14.2 shows the density of water in various phases and temperature. The density of water increases with decreasing
temperature, reaching a maximum at 4.0°C, and then decreases as the temperature falls below 4.0°C . This behavior of

the density of water explains why ice forms at the top of a body of water.

Substance ρ(kg/m3)

Ice (0°C) 9.17 × 102

Water (0°C) 9.998 × 102

Water (4°C) 1.000 × 103

Table 14.2 Densities of Water
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Substance ρ(kg/m3)

Water (20°C) 9.982 × 102

Water (100°C) 9.584 × 102

Steam (100°C, 101.3 kPa) 1.670 × 102

Sea water (0°C) 1.030 × 103

Table 14.2 Densities of Water

The density of a substance is not necessarily constant throughout the volume of a substance. If the density is constant
throughout a substance, the substance is said to be a homogeneous substance. A solid iron bar is an example of a
homogeneous substance. The density is constant throughout, and the density of any sample of the substance is the same as
its average density. If the density of a substance were not constant, the substance is said to be a heterogeneous substance. A
chunk of Swiss cheese is an example of a heterogeneous material containing both the solid cheese and gas-filled voids. The
density at a specific location within a heterogeneous material is called local density, and is given as a function of location,
ρ = ρ(x, y, z) (Figure 14.4).

Figure 14.4 Density may vary throughout a heterogeneous mixture. Local density at a point is
obtained from dividing mass by volume in a small volume around a given point.

Local density can be obtained by a limiting process, based on the average density in a small volume around the point in
question, taking the limit where the size of the volume approaches zero,

(14.2)ρ = lim
ΔV → 0

Δm
ΔV

where ρ is the density, m is the mass, and V is the volume.

Since gases are free to expand and contract, the densities of the gases vary considerably with temperature, whereas the
densities of liquids vary little with temperature. Therefore, the densities of liquids are often treated as constant, with the
density equal to the average density.

Density is a dimensional property; therefore, when comparing the densities of two substances, the units must be taken
into consideration. For this reason, a more convenient, dimensionless quantity called the specific gravity is often used to
compare densities. Specific gravity is defined as the ratio of the density of the material to the density of water at 4.0 °C
and one atmosphere of pressure, which is 1000 kg/m3 :
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Specific ravity = Density of material
Density of water .

The comparison uses water because the density of water is 1 g/cm3 , which was originally used to define the kilogram.

Specific gravity, being dimensionless, provides a ready comparison among materials without having to worry about the unit

of density. For instance, the density of aluminum is 2.7 in g/cm3 (2700 in kg/m3 ), but its specific gravity is 2.7, regardless

of the unit of density. Specific gravity is a particularly useful quantity with regard to buoyancy, which we will discuss later
in this chapter.

Pressure
You have no doubt heard the word ‘pressure’ used in relation to blood (high or low blood pressure) and in relation to
weather (high- and low-pressure weather systems). These are only two of many examples of pressure in fluids. (Recall that
we introduced the idea of pressure in Static Equilibrium and Elasticity, in the context of bulk stress and strain.)

Pressure

Pressure (p) is defined as the normal force F per unit area A over which the force is applied, or

(14.3)p = F
A.

To define the pressure at a specific point, the pressure is defined as the force dF exerted by a fluid over an infinitesimal

element of area dA containing the point, resulting in p = dF
dA .

A given force can have a significantly different effect, depending on the area over which the force is exerted. For instance,

a force applied to an area of 1 mm2 has a pressure that is 100 times as great as the same force applied to an area of 1 cm2.
That is why a sharp needle is able to poke through skin when a small force is exerted, but applying the same force with a
finger does not puncture the skin (Figure 14.5).

Figure 14.5 (a) A person being poked with a finger might be irritated, but the force has little
lasting effect. (b) In contrast, the same force applied to an area the size of the sharp end of a
needle is enough to break the skin.

Note that although force is a vector, pressure is a scalar. Pressure is a scalar quantity because it is defined to be proportional
to the magnitude of the force acting perpendicular to the surface area. The SI unit for pressure is the pascal (Pa), named
after the French mathematician and physicist Blaise Pascal (1623–1662), where

1 Pa = 1 N/m2.

Several other units are used for pressure, which we discuss later in the chapter.
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Variation of pressure with depth in a fluid of constant density

Pressure is defined for all states of matter, but it is particularly important when discussing fluids. An important characteristic
of fluids is that there is no significant resistance to the component of a force applied parallel to the surface of a fluid.
The molecules of the fluid simply flow to accommodate the horizontal force. A force applied perpendicular to the surface
compresses or expands the fluid. If you try to compress a fluid, you find that a reaction force develops at each point inside
the fluid in the outward direction, balancing the force applied on the molecules at the boundary.

Consider a fluid of constant density as shown in Figure 14.6. The pressure at the bottom of the container is due to the
pressure of the atmosphere (p0) plus the pressure due to the weight of the fluid. The pressure due to the fluid is equal to

the weight of the fluid divided by the area. The weight of the fluid is equal to its mass times the acceleration due to gravity.

Figure 14.6 The bottom of this container supports the entire
weight of the fluid in it. The vertical sides cannot exert an
upward force on the fluid (since it cannot withstand a shearing
force), so the bottom must support it all.

Since the density is constant, the weight can be calculated using the density:

w = mg = ρVg = ρAhg.

The pressure at the bottom of the container is therefore equal to atmospheric pressure added to the weight of the fluid
divided by the area:

p = p0 + ρAhg
A = p0 + ρhg.

This equation is only good for pressure at a depth for a fluid of constant density.

Pressure at a Depth for a Fluid of Constant Density

The pressure at a depth in a fluid of constant density is equal to the pressure of the atmosphere plus the pressure due to
the weight of the fluid, or

(14.4)p = p0 + ρhg,

Where p is the pressure at a particular depth, p0 is the pressure of the atmosphere, ρ is the density of the fluid, g is

the acceleration due to gravity, and h is the depth.
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Figure 14.7 The Three Gorges Dam, erected on the Yangtze
River in central China in 2008, created a massive reservoir that
displaced more than one million people. (credit: “Le Grand
Portage”/Flickr)

Example 14.1

What Force Must a Dam Withstand?

Consider the pressure and force acting on the dam retaining a reservoir of water (Figure 14.7). Suppose the dam
is 500-m wide and the water is 80.0-m deep at the dam, as illustrated below. (a) What is the average pressure on
the dam due to the water? (b) Calculate the force exerted against the dam.

The average pressure p due to the weight of the water is the pressure at the average depth h of 40.0 m, since
pressure increases linearly with depth. The force exerted on the dam by the water is the average pressure times
the area of contact, F = pA.

solution
a. The average pressure due to the weight of a fluid is

(14.5)p = hρg.

Entering the density of water from Table 14.1 and taking h to be the average depth of 40.0 m, we obtain

p = (40.0 m)⎛⎝103 kg
m3

⎞
⎠
⎛
⎝9.80m

s2
⎞
⎠

= 3.92 × 105 N
m2 = 392 kPa.

b. We have already found the value for p. The area of the dam is

A = 80.0 m × 500 m = 4.00 × 104 m2,

so that
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14.1

F = (3.92 × 105 N/m2)(4.00 × 104 m2)
= 1.57 × 1010 N.

Significance

Although this force seems large, it is small compared with the 1.96 × 1013 N weight of the water in the reservoir.

In fact, it is only 0.0800% of the weight.

Check Your Understanding If the reservoir in Example 14.1 covered twice the area, but was kept to
the same depth, would the dam need to be redesigned?

Pressure in a static fluid in a uniform gravitational field

A static fluid is a fluid that is not in motion. At any point within a static fluid, the pressure on all sides must be
equal—otherwise, the fluid at that point would react to a net force and accelerate.

The pressure at any point in a static fluid depends only on the depth at that point. As discussed, pressure in a fluid near
Earth varies with depth due to the weight of fluid above a particular level. In the above examples, we assumed density to be
constant and the average density of the fluid to be a good representation of the density. This is a reasonable approximation
for liquids like water, where large forces are required to compress the liquid or change the volume. In a swimming pool, for
example, the density is approximately constant, and the water at the bottom is compressed very little by the weight of the
water on top. Traveling up in the atmosphere is quite a different situation, however. The density of the air begins to change
significantly just a short distance above Earth’s surface.

To derive a formula for the variation of pressure with depth in a tank containing a fluid of density ρ on the surface of Earth,
we must start with the assumption that the density of the fluid is not constant. Fluid located at deeper levels is subjected to
more force than fluid nearer to the surface due to the weight of the fluid above it. Therefore, the pressure calculated at a
given depth is different than the pressure calculated using a constant density.

Imagine a thin element of fluid at a depth h, as shown in Figure 14.8. Let the element have a cross-sectional area A and
height Δy . The forces acting upon the element are due to the pressures p(y) above and p⎛

⎝y + Δy⎞
⎠ below it. The weight of

the element itself is also shown in the free-body diagram.

Figure 14.8 Forces on a mass element inside a fluid. The weight of the element itself is shown in the free-body
diagram.

Since the element of fluid between y and y + Δy is not accelerating, the forces are balanced. Using a Cartesian y-axis
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oriented up, we find the following equation for the y-component:

(14.6)p⎛
⎝y + Δy⎞

⎠A − p(y)A − gΔm = 0⎛
⎝Δy > 0⎞

⎠.

Note that if the element had a non-zero y-component of acceleration, the right-hand side would not be zero but would
instead be the mass times the y-acceleration. The mass of the element can be written in terms of the density of the fluid and
the volume of the elements:

Δm = |ρAΔy| = −ρAΔy ⎛
⎝Δy > 0⎞

⎠.

Putting this expression for Δm into Equation 14.6 and then dividing both sides by AΔy , we find

(14.7)p(y + Δy) − p(y)
Δy = −ρg.

Taking the limit of the infinitesimally thin element Δy → 0 , we obtain the following differential equation, which gives the

variation of pressure in a fluid:

(14.8)dp
dy = −ρg.

This equation tells us that the rate of change of pressure in a fluid is proportional to the density of the fluid. The solution of
this equation depends upon whether the density ρ is constant or changes with depth; that is, the function ρ(y).

If the range of the depth being analyzed is not too great, we can assume the density to be constant. But if the range of depth
is large enough for the density to vary appreciably, such as in the case of the atmosphere, there is significant change in
density with depth. In that case, we cannot use the approximation of a constant density.

Pressure in a fluid with a constant density

Let’s use Equation 14.9 to work out a formula for the pressure at a depth h from the surface in a tank of a liquid such as
water, where the density of the liquid can be taken to be constant.

We need to integrate Equation 14.9 from y = 0, where the pressure is atmospheric pressure (p0), to y = −h, the

y-coordinate of the depth:

(14.9)∫
p0

p
dp = −∫

0

−h
ρgdy

p − p0 = ρgh
p = p0 + ρgh.

Hence, pressure at a depth of fluid on the surface of Earth is equal to the atmospheric pressure plus ρgh if the density of the
fluid is constant over the height, as we found previously.

Note that the pressure in a fluid depends only on the depth from the surface and not on the shape of the container. Thus, in
a container where a fluid can freely move in various parts, the liquid stays at the same level in every part, regardless of the
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shape, as shown in Figure 14.9.

Figure 14.9 If a fluid can flow freely between parts of a
container, it rises to the same height in each part. In the
container pictured, the pressure at the bottom of each column is
the same; if it were not the same, the fluid would flow until the
pressures became equal.

Variation of atmospheric pressure with height

The change in atmospheric pressure with height is of particular interest. Assuming the temperature of air to be constant, and
that the ideal gas law of thermodynamics describes the atmosphere to a good approximation, we can find the variation of
atmospheric pressure with height, when the temperature is constant. (We discuss the ideal gas law in a later chapter, but we
assume you have some familiarity with it from high school and chemistry.) Let p(y) be the atmospheric pressure at height y.
The density ρ at y, the temperature T in the Kelvin scale (K), and the mass m of a molecule of air are related to the absolute

pressure by the ideal gas law, in the form

(14.10)p = ρkB T
m (atmosphere),

where kB is Boltzmann’s constant, which has a value of 1.38 × 10−23 J/K .

You may have encountered the ideal gas law in the form pV = nRT , where n is the number of moles and R is the gas

constant. Here, the same law has been written in a different form, using the density ρ instead of volume V. Therefore, if

pressure p changes with height, so does the density ρ. Using density from the ideal gas law, the rate of variation of pressure

with height is given as

dp
dy = −p⎛

⎝
mg

kB T
⎞
⎠,

where constant quantities have been collected inside the parentheses. Replacing these constants with a single symbol α,
the equation looks much simpler:

dp
dy = −αp

dp
p = −αdy

⌠
⌡p0

p(y)
dp
p = ∫

0

y

−αdy

⎡
⎣ln(p)⎤

⎦ p0
p(y) = [−αy]0

y

ln(p) − ln(p0) = −αy
ln⎛

⎝
p
p0

⎞
⎠ = −αy

This gives the solution

p(y) = p0 exp(−αy).

Thus, atmospheric pressure drops exponentially with height, since the y-axis is pointed up from the ground and y has
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positive values in the atmosphere above sea level. The pressure drops by a factor of 1
e when the height is 1

α, which gives

us a physical interpretation for α : The constant 1
α is a length scale that characterizes how pressure varies with height and

is often referred to as the pressure scale height.

We can obtain an approximate value of α by using the mass of a nitrogen molecule as a proxy for an air molecule. At

temperature 27 °C, or 300 K, we find

α = − mg
kB T = 4.8 × 10−26 kg × 9.81 m/s2

1.38 × 10−23 J/K × 300 K
= 1

8800 m.

Therefore, for every 8800 meters, the air pressure drops by a factor 1/e, or approximately one-third of its value. This gives
us only a rough estimate of the actual situation, since we have assumed both a constant temperature and a constant g over
such great distances from Earth, neither of which is correct in reality.

Direction of pressure in a fluid

Fluid pressure has no direction, being a scalar quantity, whereas the forces due to pressure have well-defined directions:
They are always exerted perpendicular to any surface. The reason is that fluids cannot withstand or exert shearing forces.
Thus, in a static fluid enclosed in a tank, the force exerted on the walls of the tank is exerted perpendicular to the inside
surface. Likewise, pressure is exerted perpendicular to the surfaces of any object within the fluid. Figure 14.10 illustrates
the pressure exerted by air on the walls of a tire and by water on the body of a swimmer.

Figure 14.10 (a) Pressure inside this tire exerts forces perpendicular to all surfaces it contacts. The arrows represent directions
and magnitudes of the forces exerted at various points. (b) Pressure is exerted perpendicular to all sides of this swimmer, since
the water would flow into the space he occupies if he were not there. The arrows represent the directions and magnitudes of the
forces exerted at various points on the swimmer. Note that the forces are larger underneath, due to greater depth, giving a net
upward or buoyant force. The net vertical force on the swimmer is equal to the sum of the buoyant force and the weight of the
swimmer.

14.2 | Measuring Pressure

Learning Objectives

By the end of this section, you will be able to:

• Define gauge pressure and absolute pressure

• Explain various methods for measuring pressure

• Understand the working of open-tube barometers

• Describe in detail how manometers and barometers operate

In the preceding section, we derived a formula for calculating the variation in pressure for a fluid in hydrostatic equilibrium.
As it turns out, this is a very useful calculation. Measurements of pressure are important in daily life as well as in science
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and engineering applications. In this section, we discuss different ways that pressure can be reported and measured.

Gauge Pressure vs. Absolute Pressure
Suppose the pressure gauge on a full scuba tank reads 3000 psi, which is approximately 207 atmospheres. When the valve
is opened, air begins to escape because the pressure inside the tank is greater than the atmospheric pressure outside the
tank. Air continues to escape from the tank until the pressure inside the tank equals the pressure of the atmosphere outside
the tank. At this point, the pressure gauge on the tank reads zero, even though the pressure inside the tank is actually 1
atmosphere—the same as the air pressure outside the tank.

Most pressure gauges, like the one on the scuba tank, are calibrated to read zero at atmospheric pressure. Pressure readings
from such gauges are called gauge pressure, which is the pressure relative to the atmospheric pressure. When the pressure
inside the tank is greater than atmospheric pressure, the gauge reports a positive value.

Some gauges are designed to measure negative pressure. For example, many physics experiments must take place in a
vacuum chamber, a rigid chamber from which some of the air is pumped out. The pressure inside the vacuum chamber is
less than atmospheric pressure, so the pressure gauge on the chamber reads a negative value.

Unlike gauge pressure, absolute pressure accounts for atmospheric pressure, which in effect adds to the pressure in any
fluid not enclosed in a rigid container.

Absolute Pressure

The absolute pressure, or total pressure, is the sum of gauge pressure and atmospheric pressure:

(14.11)pabs = pg + patm

where pabs is absolute pressure, pg is gauge pressure, and patm is atmospheric pressure.

For example, if a tire gauge reads 34 psi, then the absolute pressure is 34 psi plus 14.7 psi ( patm in psi), or 48.7 psi

(equivalent to 336 kPa).

In most cases, the absolute pressure in fluids cannot be negative. Fluids push rather than pull, so the smallest absolute
pressure in a fluid is zero (a negative absolute pressure is a pull). Thus, the smallest possible gauge pressure is pg = −patm

(which makes pabs zero). There is no theoretical limit to how large a gauge pressure can be.

Measuring Pressure
A host of devices are used for measuring pressure, ranging from tire gauges to blood pressure monitors. Many other types
of pressure gauges are commonly used to test the pressure of fluids, such as mechanical pressure gauges. We will explore
some of these in this section.

Any property that changes with pressure in a known way can be used to construct a pressure gauge. Some of the most
common types include strain gauges, which use the change in the shape of a material with pressure; capacitance pressure
gauges, which use the change in electric capacitance due to shape change with pressure; piezoelectric pressure gauges,
which generate a voltage difference across a piezoelectric material under a pressure difference between the two sides; and
ion gauges, which measure pressure by ionizing molecules in highly evacuated chambers. Different pressure gauges are
useful in different pressure ranges and under different physical situations. Some examples are shown in Figure 14.11.
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Figure 14.11 (a) Gauges are used to measure and monitor pressure in gas cylinders. Compressed gases are used in many
industrial as well as medical applications. (b) Tire pressure gauges come in many different models, but all are meant for the same
purpose: to measure the internal pressure of the tire. This enables the driver to keep the tires inflated at optimal pressure for load
weight and driving conditions. (c) An ionization gauge is a high-sensitivity device used to monitor the pressure of gases in an
enclosed system. Neutral gas molecules are ionized by the release of electrons, and the current is translated into a pressure
reading. Ionization gauges are commonly used in industrial applications that rely on vacuum systems.

Manometers

One of the most important classes of pressure gauges applies the property that pressure due to the weight of a fluid of
constant density is given by p = hρg . The U-shaped tube shown in Figure 14.12 is an example of a manometer; in part

(a), both sides of the tube are open to the atmosphere, allowing atmospheric pressure to push down on each side equally so
that its effects cancel.

A manometer with only one side open to the atmosphere is an ideal device for measuring gauge pressures. The gauge
pressure is pg = hρg and is found by measuring h. For example, suppose one side of the U-tube is connected to some

source of pressure pabs, such as the balloon in part (b) of the figure or the vacuum-packed peanut jar shown in part (c).

Pressure is transmitted undiminished to the manometer, and the fluid levels are no longer equal. In part (b), pabs is greater

than atmospheric pressure, whereas in part (c), pabs is less than atmospheric pressure. In both cases, pabs differs from

atmospheric pressure by an amount hρg, where ρ is the density of the fluid in the manometer. In part (b), pabs can

support a column of fluid of height h, so it must exert a pressure hρg greater than atmospheric pressure (the gauge pressure

pg is positive). In part (c), atmospheric pressure can support a column of fluid of height h, so pabs is less than atmospheric

pressure by an amount hρg (the gauge pressure pg is negative).

Figure 14.12 An open-tube manometer has one side open to the atmosphere. (a) Fluid depth must be the same on both sides, or
the pressure each side exerts at the bottom will be unequal and liquid will flow from the deeper side. (b) A positive gauge
pressure pg = hρg transmitted to one side of the manometer can support a column of fluid of height h. (c) Similarly,

atmospheric pressure is greater than a negative gauge pressure pg by an amount hρg . The jar’s rigidity prevents atmospheric

pressure from being transmitted to the peanuts.

Barometers

Manometers typically use a U-shaped tube of a fluid (often mercury) to measure pressure. A barometer (see Figure 14.13)
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is a device that typically uses a single column of mercury to measure atmospheric pressure. The barometer, invented by
the Italian mathematician and physicist Evangelista Torricelli (1608–1647) in 1643, is constructed from a glass tube closed
at one end and filled with mercury. The tube is then inverted and placed in a pool of mercury. This device measures
atmospheric pressure, rather than gauge pressure, because there is a nearly pure vacuum above the mercury in the tube. The
height of the mercury is such that hρg = patm . When atmospheric pressure varies, the mercury rises or falls.

Weather forecasters closely monitor changes in atmospheric pressure (often reported as barometric pressure), as rising
mercury typically signals improving weather and falling mercury indicates deteriorating weather. The barometer can also
be used as an altimeter, since average atmospheric pressure varies with altitude. Mercury barometers and manometers are
so common that units of mm Hg are often quoted for atmospheric pressure and blood pressures.

Figure 14.13 A mercury barometer measures atmospheric
pressure. The pressure due to the mercury’s weight, hρg ,

equals atmospheric pressure. The atmosphere is able to force
mercury in the tube to a height h because the pressure above the
mercury is zero.

Example 14.2

Fluid Heights in an Open U-Tube

A U-tube with both ends open is filled with a liquid of density ρ1 to a height h on both sides (Figure 14.14). A

liquid of density ρ2 < ρ1 is poured into one side and Liquid 2 settles on top of Liquid 1. The heights on the two

sides are different. The height to the top of Liquid 2 from the interface is h2 and the height to the top of Liquid

1 from the level of the interface is h1 . Derive a formula for the height difference.
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Figure 14.14 Two liquids of different densities are shown in a U-tube.

Strategy

The pressure at points at the same height on the two sides of a U-tube must be the same as long as the two points
are in the same liquid. Therefore, we consider two points at the same level in the two arms of the tube: One point
is the interface on the side of the Liquid 2 and the other is a point in the arm with Liquid 1 that is at the same level
as the interface in the other arm. The pressure at each point is due to atmospheric pressure plus the weight of the
liquid above it.

Pressure on the side with Liquid 1 = p0 + ρ1 gh1
Pressure on the side with Liquid 2 = p0 + ρ2 gh2

Solution

Since the two points are in Liquid 1 and are at the same height, the pressure at the two points must be the same.
Therefore, we have

p0 + ρ1 gh1 = p0 + ρ2 gh2.

Hence,

ρ1 h1 = ρ2 h2.

This means that the difference in heights on the two sides of the U-tube is

h2 − h1 = ⎛
⎝1 − p1

p2
⎞
⎠h2.

The result makes sense if we set p2 = p1, which gives h2 = h1. If the two sides have the same density, they

have the same height.

Check Your Understanding Mercury is a hazardous substance. Why do you suppose mercury is
typically used in barometers instead of a safer fluid such as water?

Units of pressure

As stated earlier, the SI unit for pressure is the pascal (Pa), where

1 Pa = 1 N/m2.

In addition to the pascal, many other units for pressure are in common use (Table 14.3). In meteorology, atmospheric
pressure is often described in the unit of millibars (mb), where
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1000 mb = 1 × 105 Pa.

The millibar is a convenient unit for meteorologists because the average atmospheric pressure at sea level on Earth

is 1.013 × 105 Pa = 1013 mb = 1 atm . Using the equations derived when considering pressure at a depth in a fluid,

pressure can also be measured as millimeters or inches of mercury. The pressure at the bottom of a 760-mm column of
mercury at 0 °C in a container where the top part is evacuated is equal to the atmospheric pressure. Thus, 760 mm Hg

is also used in place of 1 atmosphere of pressure. In vacuum physics labs, scientists often use another unit called the torr,
named after Torricelli, who, as we have just seen, invented the mercury manometer for measuring pressure. One torr is equal
to a pressure of 1 mm Hg.

Unit Definition

SI unit: the Pascal 1 Pa = 1 N/m2

English unit: pounds per square inch ( lb/in.2 or psi) 1 psi = 7.015 × 103 Pa

1 atm = 760 mmHg

= 1.013 × 105 Pa
= 14.7 psi
= 29.9 inches of Hg
= 1013 mb

1 bar = 105 Pa

Other units of pressure

1 torr = 1 mm Hg = 122.39 Pa

Table 14.3 Summary of the Units of Pressure

14.3 | Pascal's Principle and Hydraulics

Learning Objectives

By the end of this section, you will be able to:

• State Pascal’s principle

• Describe applications of Pascal’s principle

• Derive relationships between forces in a hydraulic system

In 1653, the French philosopher and scientist Blaise Pascal published his Treatise on the Equilibrium of Liquids, in which he
discussed principles of static fluids. A static fluid is a fluid that is not in motion. When a fluid is not flowing, we say that the
fluid is in static equilibrium. If the fluid is water, we say it is in hydrostatic equilibrium. For a fluid in static equilibrium,
the net force on any part of the fluid must be zero; otherwise the fluid will start to flow.

Pascal’s observations—since proven experimentally—provide the foundation for hydraulics, one of the most important
developments in modern mechanical technology. Pascal observed that a change in pressure applied to an enclosed fluid is
transmitted undiminished throughout the fluid and to the walls of its container. Because of this, we often know more about
pressure than other physical quantities in fluids. Moreover, Pascal’s principle implies that the total pressure in a fluid is the
sum of the pressures from different sources. A good example is the fluid at a depth depends on the depth of the fluid and
the pressure of the atmosphere.

Pascal’s Principle
Pascal’s principle (also known as Pascal’s law) states that when a change in pressure is applied to an enclosed fluid, it is
transmitted undiminished to all portions of the fluid and to the walls of its container. In an enclosed fluid, since atoms of the
fluid are free to move about, they transmit pressure to all parts of the fluid and to the walls of the container. Any change in
pressure is transmitted undiminished.

Note that this principle does not say that the pressure is the same at all points of a fluid—which is not true, since the pressure
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in a fluid near Earth varies with height. Rather, this principle applies to the change in pressure. Suppose you place some
water in a cylindrical container of height H and cross-sectional area A that has a movable piston of mass m (Figure 14.15).
Adding weight Mg at the top of the piston increases the pressure at the top by Mg/A, since the additional weight also acts
over area A of the lid:

Δptop = Mg
A .

Figure 14.15 Pressure in a fluid changes when the fluid is compressed. (a)
The pressure at the top layer of the fluid is different from pressure at the bottom
layer. (b) The increase in pressure by adding weight to the piston is the same
everywhere, for example, ptop new − ptop = pbottom new − pbottom .

According to Pascal’s principle, the pressure at all points in the water changes by the same amount, Mg/A. Thus, the pressure
at the bottom also increases by Mg/A. The pressure at the bottom of the container is equal to the sum of the atmospheric
pressure, the pressure due the fluid, and the pressure supplied by the mass. The change in pressure at the bottom of the
container due to the mass is

Δpbottom = Mg
A .

Since the pressure changes are the same everywhere in the fluid, we no longer need subscripts to designate the pressure
change for top or bottom:

Δp = Δptop = Δpbottom = Δpeverywhere.

Pascal’s Barrel is a great demonstration of Pascal’s principle. Watch a simulation
(https://openstaxcollege.org/l/21pascalbarrel) of Pascal’s 1646 experiment, in which he demonstrated the
effects of changing pressure in a fluid.

Applications of Pascal’s Principle and Hydraulic Systems
Hydraulic systems are used to operate automotive brakes, hydraulic jacks, and numerous other mechanical systems (Figure
14.16).
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Figure 14.16 A typical hydraulic system with two fluid-filled
cylinders, capped with pistons and connected by a tube called a

hydraulic line. A downward force F→ 1 on the left piston

creates a change in pressure that is transmitted undiminished to
all parts of the enclosed fluid. This results in an upward force

F→ 2 on the right piston that is larger than F→ 1 because the

right piston has a larger surface area.

We can derive a relationship between the forces in this simple hydraulic system by applying Pascal’s principle. Note first
that the two pistons in the system are at the same height, so there is no difference in pressure due to a difference in depth.
The pressure due to F1 acting on area A1 is simply

p1 = F1
A1

, as defined y p = F
A.

According to Pascal’s principle, this pressure is transmitted undiminished throughout the fluid and to all walls of the
container. Thus, a pressure p2 is felt at the other piston that is equal to p1 . That is, p1 = p2. However, since

p2 = F2 /A2, we see that

(14.12)F1
A1

= F2
A2

.

This equation relates the ratios of force to area in any hydraulic system, provided that the pistons are at the same vertical
height and that friction in the system is negligible.

Hydraulic systems can increase or decrease the force applied to them. To make the force larger, the pressure is applied to
a larger area. For example, if a 100-N force is applied to the left cylinder in Figure 14.16 and the right cylinder has an
area five times greater, then the output force is 500 N. Hydraulic systems are analogous to simple levers, but they have the
advantage that pressure can be sent through tortuously curved lines to several places at once.

The hydraulic jack is such a hydraulic system. A hydraulic jack is used to lift heavy loads, such as the ones used by auto
mechanics to raise an automobile. It consists of an incompressible fluid in a U-tube fitted with a movable piston on each
side. One side of the U-tube is narrower than the other. A small force applied over a small area can balance a much larger
force on the other side over a larger area (Figure 14.17).
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Figure 14.17 (a) A hydraulic jack operates by applying forces (F1 , F2) to an incompressible fluid in a U-tube, using

a movable piston (A1, A2) on each side of the tube. (b) Hydraulic jacks are commonly used by car mechanics to lift

vehicles so that repairs and maintenance can be performed.

From Pascal’s principle, it can be shown that the force needed to lift the car is less than the weight of the car:

F1 = A1
A2

F2,

where F1 is the force applied to lift the car, A1 is the cross-sectional area of the smaller piston, A2 is the cross sectional

area of the larger piston, and F2 is the weight of the car.

Example 14.3

Calculating Force on Wheel Cylinders: Pascal Puts on the Brakes

Consider the automobile hydraulic system shown in Figure 14.18. Suppose a force of 100 N is applied to the
brake pedal, which acts on the pedal cylinder (acting as a “master” cylinder) through a lever. A force of 500 N
is exerted on the pedal cylinder. Pressure created in the pedal cylinder is transmitted to the four wheel cylinders.
The pedal cylinder has a diameter of 0.500 cm and each wheel cylinder has a diameter of 2.50 cm. Calculate the
magnitude of the force F2 created at each of the wheel cylinders.
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Figure 14.18 Hydraulic brakes use Pascal’s principle. The driver pushes the brake pedal, exerting a force
that is increased by the simple lever and again by the hydraulic system. Each of the identical wheel cylinders
receives the same pressure and, therefore, creates the same force output F2 . The circular cross-sectional areas

of the pedal and wheel cylinders are represented by A1 and A2 , respectively.

Strategy

We are given the force F1 applied to the pedal cylinder. The cross-sectional areas A1 and A2 can be calculated

from their given diameters. Then we can use the following relationship to find the force F2 :

F1
A1

= F2
A2

.

Manipulate this algebraically to get F2 on one side and substitute known values.

Solution

Pascal’s principle applied to hydraulic systems is given by
F1
A1

= F2
A2

:

F2 = A2
A1

F1 =
πr2

2

πr1
2F1

= (1.25 cm)2

(0.250 cm)2 × 500 N = 1.25 × 104 N.
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14.3

Significance

This value is the force exerted by each of the four wheel cylinders. Note that we can add as many wheel cylinders

as we wish. If each has a 2.50-cm diameter, each will exert 1.25 × 104 N. A simple hydraulic system, as an

example of a simple machine, can increase force but cannot do more work than is done on it. Work is force times
distance moved, and the wheel cylinder moves through a smaller distance than the pedal cylinder. Furthermore,
the more wheels added, the smaller the distance each one moves. Many hydraulic systems—such as power brakes
and those in bulldozers—have a motorized pump that actually does most of the work in the system.

Check Your Understanding Would a hydraulic press still operate properly if a gas is used instead of a
liquid?

14.4 | Archimedes’ Principle and Buoyancy

Learning Objectives

By the end of this section, you will be able to:

• Define buoyant force

• State Archimedes’ principle

• Describe the relationship between density and Archimedes’ principle

When placed in a fluid, some objects float due to a buoyant force. Where does this buoyant force come from? Why is it that
some things float and others do not? Do objects that sink get any support at all from the fluid? Is your body buoyed by the
atmosphere, or are only helium balloons affected (Figure 14.19)?

Figure 14.19 (a) Even objects that sink, like this anchor, are partly supported by water when submerged. (b) Submarines have
adjustable density (ballast tanks) so that they may float or sink as desired. (c) Helium-filled balloons tug upward on their strings,
demonstrating air’s buoyant effect. (credit b: modification of work by Allied Navy; credit c: modification of work by
“Crystl”/Flickr)

Answers to all these questions, and many others, are based on the fact that pressure increases with depth in a fluid. This
means that the upward force on the bottom of an object in a fluid is greater than the downward force on top of the object.
There is an upward force, or buoyant force, on any object in any fluid (Figure 14.20). If the buoyant force is greater than
the object’s weight, the object rises to the surface and floats. If the buoyant force is less than the object’s weight, the object
sinks. If the buoyant force equals the object’s weight, the object can remain suspended at its present depth. The buoyant
force is always present, whether the object floats, sinks, or is suspended in a fluid.
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Buoyant Force

The buoyant force is the upward force on any object in any fluid.

Figure 14.20 Pressure due to the weight of a fluid increases
with depth because p = hpg . This change in pressure and

associated upward force on the bottom of the cylinder are
greater than the downward force on the top of the cylinder. The
differences in the force results in the buoyant force FB .

(Horizontal forces cancel.)

Archimedes’ Principle
Just how large a force is buoyant force? To answer this question, think about what happens when a submerged object is
removed from a fluid, as in Figure 14.21. If the object were not in the fluid, the space the object occupied would be filled
by fluid having a weight wfl. This weight is supported by the surrounding fluid, so the buoyant force must equal wfl, the

weight of the fluid displaced by the object.

Archimedes’ Principle

The buoyant force on an object equals the weight of the fluid it displaces. In equation form, Archimedes’ principle is

FB = wfl,

where FB is the buoyant force and wfl is the weight of the fluid displaced by the object.

This principle is named after the Greek mathematician and inventor Archimedes (ca. 287–212 BCE), who stated this
principle long before concepts of force were well established.
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Figure 14.21 (a) An object submerged in a fluid experiences a buoyant force FB. If FB is greater than the weight of the

object, the object rises. If FB is less than the weight of the object, the object sinks. (b) If the object is removed, it is replaced

by fluid having weight wfl. Since this weight is supported by surrounding fluid, the buoyant force must equal the weight of

the fluid displaced.

Archimedes’ principle refers to the force of buoyancy that results when a body is submerged in a fluid, whether partially
or wholly. The force that provides the pressure of a fluid acts on a body perpendicular to the surface of the body. In other
words, the force due to the pressure at the bottom is pointed up, while at the top, the force due to the pressure is pointed
down; the forces due to the pressures at the sides are pointing into the body.

Since the bottom of the body is at a greater depth than the top of the body, the pressure at the lower part of the body is higher
than the pressure at the upper part, as shown in Figure 14.20. Therefore a net upward force acts on the body. This upward
force is the force of buoyancy, or simply buoyancy.

The exclamation “Eureka” (meaning “I found it”) has often been credited to Archimedes as he made the discovery
that would lead to Archimedes’ principle. Some say it all started in a bathtub. To read the story, visit NASA
(https://openstaxcollege.org/l/21archNASA) or explore Scientific American
(https://openstaxcollege.org/l/21archsciamer) to learn more.

Density and Archimedes’ Principle
If you drop a lump of clay in water, it will sink. But if you mold the same lump of clay into the shape of a boat, it will float.
Because of its shape, the clay boat displaces more water than the lump and experiences a greater buoyant force, even though
its mass is the same. The same is true of steel ships.

The average density of an object is what ultimately determines whether it floats. If an object’s average density is less than
that of the surrounding fluid, it will float. The reason is that the fluid, having a higher density, contains more mass and hence
more weight in the same volume. The buoyant force, which equals the weight of the fluid displaced, is thus greater than the
weight of the object. Likewise, an object denser than the fluid will sink.

The extent to which a floating object is submerged depends on how the object’s density compares to the density of the fluid.
In Figure 14.22, for example, the unloaded ship has a lower density and less of it is submerged compared with the same
ship when loaded. We can derive a quantitative expression for the fraction submerged by considering density. The fraction
submerged is the ratio of the volume submerged to the volume of the object, or

fraction submerged = Vsub
Vobj

= Vfl
Vobj

.

The volume submerged equals the volume of fluid displaced, which we call V f l . Now we can obtain the relationship

between the densities by substituting ρ = m
V into the expression. This gives

Vfl
Vobj

= mfl /ρfl
mobj /ρobj

,

where ρobj is the average density of the object and ρfl is the density of the fluid. Since the object floats, its mass and that
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of the displaced fluid are equal, so they cancel from the equation, leaving

fraction submerged =
ρobj
ρfl

.

We can use this relationship to measure densities.

Figure 14.22 An unloaded ship (a) floats higher in the water than a loaded ship (b).

Example 14.4

Calculating Average Density

Suppose a 60.0-kg woman floats in fresh water with 97.0% of her volume submerged when her lungs are full of
air. What is her average density?

Strategy

We can find the woman’s density by solving the equation

fraction submerged =
ρobj
ρfl

for the density of the object. This yields

ρobj = ρperson = (fraction submerged) · ρfl.

We know both the fraction submerged and the density of water, so we can calculate the woman’s density.

Solution

Entering the known values into the expression for her density, we obtain

ρperson = 0.970 · ⎛⎝103 kg
m3

⎞
⎠ = 970 kg

m3.

Significance

The woman’s density is less than the fluid density. We expect this because she floats.

Numerous lower-density objects or substances float in higher-density fluids: oil on water, a hot-air balloon in the
atmosphere, a bit of cork in wine, an iceberg in salt water, and hot wax in a “lava lamp,” to name a few. A less obvious
example is mountain ranges floating on the higher-density crust and mantle beneath them. Even seemingly solid Earth has
fluid characteristics.

Measuring Density
One of the most common techniques for determining density is shown in Figure 14.23.

716 Chapter 14 | Fluid Mechanics

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



Figure 14.23 (a) A coin is weighed in air. (b) The apparent weight of the coin is determined while it is completely submerged
in a fluid of known density. These two measurements are used to calculate the density of the coin.

An object, here a coin, is weighed in air and then weighed again while submerged in a liquid. The density of the coin, an
indication of its authenticity, can be calculated if the fluid density is known. We can use this same technique to determine
the density of the fluid if the density of the coin is known.

All of these calculations are based on Archimedes’ principle, which states that the buoyant force on the object equals the
weight of the fluid displaced. This, in turn, means that the object appears to weigh less when submerged; we call this
measurement the object’s apparent weight. The object suffers an apparent weight loss equal to the weight of the fluid
displaced. Alternatively, on balances that measure mass, the object suffers an apparent mass loss equal to the mass of
fluid displaced. That is, apparent weight loss equals weight of fluid displaced, or apparent mass loss equals mass of fluid
displaced.

14.5 | Fluid Dynamics

Learning Objectives

By the end of this section, you will be able to:

• Describe the characteristics of flow

• Calculate flow rate

• Describe the relationship between flow rate and velocity

• Explain the consequences of the equation of continuity to the conservation of mass

The first part of this chapter dealt with fluid statics, the study of fluids at rest. The rest of this chapter deals with fluid
dynamics, the study of fluids in motion. Even the most basic forms of fluid motion can be quite complex. For this reason,
we limit our investigation to ideal fluids in many of the examples. An ideal fluid is a fluid with negligible viscosity.
Viscosity is a measure of the internal friction in a fluid; we examine it in more detail in Viscosity and Turbulence. In
a few examples, we examine an incompressible fluid—one for which an extremely large force is required to change the
volume—since the density in an incompressible fluid is constant throughout.

Characteristics of Flow
Velocity vectors are often used to illustrate fluid motion in applications like meteorology. For example, wind—the fluid
motion of air in the atmosphere—can be represented by vectors indicating the speed and direction of the wind at any given
point on a map. Figure 14.24 shows velocity vectors describing the winds during Hurricane Arthur in 2014.
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Figure 14.24 The velocity vectors show the flow of wind in Hurricane
Arthur. Notice the circulation of the wind around the eye of the hurricane.
Wind speeds are highest near the eye. The colors represent the relative
vorticity, a measure of turning or spinning of the air.

Another method for representing fluid motion is a streamline. A streamline represents the path of a small volume of fluid as
it flows. The velocity is always tangential to the streamline. The diagrams in Figure 14.25 use streamlines to illustrate two
examples of fluids moving through a pipe. The first fluid exhibits a laminar flow (sometimes described as a steady flow),
represented by smooth, parallel streamlines. Note that in the example shown in part (a), the velocity of the fluid is greatest
in the center and decreases near the walls of the pipe due to the viscosity of the fluid and friction between the pipe walls
and the fluid. This is a special case of laminar flow, where the friction between the pipe and the fluid is high, known as
no slip boundary conditions. The second diagram represents turbulent flow, in which streamlines are irregular and change
over time. In turbulent flow, the paths of the fluid flow are irregular as different parts of the fluid mix together or form small
circular regions that resemble whirlpools. This can occur when the speed of the fluid reaches a certain critical speed.

Figure 14.25 (a) Laminar flow can be thought of as layers of fluid moving in parallel, regular
paths. (b) In turbulent flow, regions of fluid move in irregular, colliding paths, resulting in
mixing and swirling.

Flow Rate and its Relation to Velocity
The volume of fluid passing by a given location through an area during a period of time is called flow rate Q, or more
precisely, volume flow rate. In symbols, this is written as
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(14.13)Q = dV
dt

where V is the volume and t is the elapsed time. In Figure 14.26, the volume of the cylinder is Ax, so the flow rate is

Q = dV
dt = d

dt(Ax) = Adx
dt = Av.

Figure 14.26 Flow rate is the volume of fluid flowing past a
point through the area A per unit time. Here, the shaded cylinder
of fluid flows past point P in a uniform pipe in time t.

The SI unit for flow rate is m3 /s, but several other units for Q are in common use, such as liters per minute (L/min). Note

that a liter (L) is 1/1000 of a cubic meter or 1000 cubic centimeters (10−3 m3 or 103 cm3).

Flow rate and velocity are related, but quite different, physical quantities. To make the distinction clear, consider the flow
rate of a river. The greater the velocity of the water, the greater the flow rate of the river. But flow rate also depends on the
size and shape of the river. A rapid mountain stream carries far less water than the Amazon River in Brazil, for example.

Figure 14.26 illustrates the volume flow rate. The volume flow rate is Q = dV
dt = Av, where A is the cross-sectional

area of the pipe and v is the magnitude of the velocity.

The precise relationship between flow rate Q and average speed v is

Q = Av,

where A is the cross-sectional area and v is the average speed. The relationship tells us that flow rate is directly proportional

to both the average speed of the fluid and the cross-sectional area of a river, pipe, or other conduit. The larger the conduit,
the greater its cross-sectional area. Figure 14.26 illustrates how this relationship is obtained. The shaded cylinder has a
volume V = Ad , which flows past the point P in a time t. Dividing both sides of this relationship by t gives

V
t = Ad

t .

We note that Q = V /t and the average speed is v = d / t . Thus the equation becomes Q = Av .

Figure 14.27 shows an incompressible fluid flowing along a pipe of decreasing radius. Because the fluid is incompressible,
the same amount of fluid must flow past any point in the tube in a given time to ensure continuity of flow. The flow is
continuous because they are no sources or sinks that add or remove mass, so the mass flowing into the pipe must be equal
the mass flowing out of the pipe. In this case, because the cross-sectional area of the pipe decreases, the velocity must
necessarily increase. This logic can be extended to say that the flow rate must be the same at all points along the pipe. In
particular, for arbitrary points 1 and 2,

(14.14)Q1 = Q2,
A1 v1 = A2 v2.

This is called the equation of continuity and is valid for any incompressible fluid (with constant density). The consequences
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of the equation of continuity can be observed when water flows from a hose into a narrow spray nozzle: It emerges with a
large speed—that is the purpose of the nozzle. Conversely, when a river empties into one end of a reservoir, the water slows
considerably, perhaps picking up speed again when it leaves the other end of the reservoir. In other words, speed increases
when cross-sectional area decreases, and speed decreases when cross-sectional area increases.

Figure 14.27 When a tube narrows, the same volume occupies a greater length. For the same
volume to pass points 1 and 2 in a given time, the speed must be greater at point 2. The process
is exactly reversible. If the fluid flows in the opposite direction, its speed decreases when the
tube widens. (Note that the relative volumes of the two cylinders and the corresponding velocity
vector arrows are not drawn to scale.)

Since liquids are essentially incompressible, the equation of continuity is valid for all liquids. However, gases are
compressible, so the equation must be applied with caution to gases if they are subjected to compression or expansion.

Example 14.5

Calculating Fluid Speed through a Nozzle

A nozzle with a diameter of 0.500 cm is attached to a garden hose with a radius of 0.900 cm. The flow rate
through hose and nozzle is 0.500 L/s. Calculate the speed of the water (a) in the hose and (b) in the nozzle.

Strategy

We can use the relationship between flow rate and speed to find both speeds. We use the subscript 1 for the hose
and 2 for the nozzle.

Solution

a. We solve the flow rate equation for speed and use πr1
2 for the cross-sectional area of the hose, obtaining

v = Q
A = Q

πr1
2.

Substituting values and using appropriate unit conversions yields

v = (0.500 L/s)(10−3 m3 /L)
3.14(9.00 × 10−3 m)2 = 1.96 m/s.

b. We could repeat this calculation to find the speed in the nozzle v2 , but we use the equation of continuity

to give a somewhat different insight. The equation states

A1 v1 = A2 v2.

Solving for v2 and substituting πr2 for the cross-sectional area yields

v2 = A1
A2

v1 =
πr1

2

πr2
2v1 =

r1
2

r2
2v1.
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Substituting known values,

v2 = (0.900 cm)2

(0.250 cm)2 1.96 m/s = 25.5 m/s.

Significance

A speed of 1.96 m/s is about right for water emerging from a hose with no nozzle. The nozzle produces a
considerably faster stream merely by constricting the flow to a narrower tube.

The solution to the last part of the example shows that speed is inversely proportional to the square of the radius
of the tube, making for large effects when radius varies. We can blow out a candle at quite a distance, for example,
by pursing our lips, whereas blowing on a candle with our mouth wide open is quite ineffective.

Mass Conservation
The rate of flow of a fluid can also be described by the mass flow rate or mass rate of flow. This is the rate at which a mass
of the fluid moves past a point. Refer once again to Figure 14.26, but this time consider the mass in the shaded volume.
The mass can be determined from the density and the volume:

m = ρV = ρAx.

The mass flow rate is then

dm
dt = d

dt
⎛
⎝ρAx⎞

⎠ = ρAdx
dt = ρAv,

where ρ is the density, A is the cross-sectional area, and v is the magnitude of the velocity. The mass flow rate is an

important quantity in fluid dynamics and can be used to solve many problems. Consider Figure 14.28. The pipe in the
figure starts at the inlet with a cross sectional area of A1 and constricts to an outlet with a smaller cross sectional area of

A2 . The mass of fluid entering the pipe has to be equal to the mass of fluid leaving the pipe. For this reason the velocity at

the outlet (v2) is greater than the velocity of the inlet (v1) . Using the fact that the mass of fluid entering the pipe must be

equal to the mass of fluid exiting the pipe, we can find a relationship between the velocity and the cross-sectional area by
taking the rate of change of the mass in and the mass out:

(14.15)⎛
⎝
dm
dt

⎞
⎠1 = ⎛

⎝
dm
dt

⎞
⎠2

ρ1 A1 v1 = ρ2 A2 v2.

Equation 14.15 is also known as the continuity equation in general form. If the density of the fluid remains constant
through the constriction—that is, the fluid is incompressible—then the density cancels from the continuity equation,

A1 v1 = A2 v2.

The equation reduces to show that the volume flow rate into the pipe equals the volume flow rate out of the pipe.

Figure 14.28 Geometry for deriving the equation of
continuity. The amount of liquid entering the cross-sectional
(shaded) area must equal the amount of liquid leaving the cross-
sectional area if the liquid is incompressible.

Chapter 14 | Fluid Mechanics 721



14.6 | Bernoulli’s Equation

Learning Objectives

By the end of this section, you will be able to:

• Explain the terms in Bernoulli’s equation

• Explain how Bernoulli’s equation is related to the conservation of energy

• Describe how to derive Bernoulli’s principle from Bernoulli’s equation

• Perform calculations using Bernoulli’s principle

• Describe some applications of Bernoulli’s principle

As we showed in Figure 14.27, when a fluid flows into a narrower channel, its speed increases. That means its kinetic
energy also increases. The increased kinetic energy comes from the net work done on the fluid to push it into the channel.
Also, if the fluid changes vertical position, work is done on the fluid by the gravitational force.

A pressure difference occurs when the channel narrows. This pressure difference results in a net force on the fluid because
the pressure times the area equals the force, and this net force does work. Recall the work-energy theorem,

Wnet = 1
2mv2 − 1

2mv0
2.

The net work done increases the fluid’s kinetic energy. As a result, the pressure drops in a rapidly moving fluid whether or
not the fluid is confined to a tube.

There are many common examples of pressure dropping in rapidly moving fluids. For instance, shower curtains have a
disagreeable habit of bulging into the shower stall when the shower is on. The reason is that the high-velocity stream of
water and air creates a region of lower pressure inside the shower, whereas the pressure on the other side remains at the
standard atmospheric pressure. This pressure difference results in a net force, pushing the curtain inward. Similarly, when
a car passes a truck on the highway, the two vehicles seem to pull toward each other. The reason is the same: The high
velocity of the air between the car and the truck creates a region of lower pressure between the vehicles, and they are pushed
together by greater pressure on the outside (Figure 14.29). This effect was observed as far back as the mid-1800s, when it
was found that trains passing in opposite directions tipped precariously toward one another.

Figure 14.29 An overhead view of a car passing a truck on a
highway. Air passing between the vehicles flows in a narrower
channel and must increase its speed ( v2 is greater than v1 ),

causing the pressure between them to drop ( pi is less than

po). Greater pressure on the outside pushes the car and truck

together.

Energy Conservation and Bernoulli’s Equation
The application of the principle of conservation of energy to frictionless laminar flow leads to a very useful relation between
pressure and flow speed in a fluid. This relation is called Bernoulli’s equation, named after Daniel Bernoulli (1700–1782),
who published his studies on fluid motion in his book Hydrodynamica (1738).
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Consider an incompressible fluid flowing through a pipe that has a varying diameter and height, as shown in Figure 14.30.
Subscripts 1 and 2 in the figure denote two locations along the pipe and illustrate the relationships between the areas of the
cross sections A, the speed of flow v, the height from ground y, and the pressure p at each point. We assume here that the
density at the two points is the same—therefore, density is denoted by ρ without any subscripts—and since the fluid in

incompressible, the shaded volumes must be equal.

Figure 14.30 The geometry used for the derivation of Bernoulli’s equation.

We also assume that there are no viscous forces in the fluid, so the energy of any part of the fluid will be conserved. To
derive Bernoulli’s equation, we first calculate the work that was done on the fluid:

dW = F1 dx1 − F2 dx2

dW = p1 A1 dx1 − p2 A2 dx2 = p1 dV − p2 dV = (p1 − p2)dV .

The work done was due to the conservative force of gravity and the change in the kinetic energy of the fluid. The change in
the kinetic energy of the fluid is equal to

dK = 1
2m2 v2

2 − 1
2m1 v1

2 = 1
2ρdV⎛

⎝v2
2 − v1

2⎞
⎠.

The change in potential energy is

dU = mgy2 − mgy1 = ρdVg(y2 − y1).

The energy equation then becomes

dW = dK + dU
(p1 − p2)dV = 1

2ρdV⎛
⎝v2

2 − v1
2⎞

⎠ + ρdVg(y2 − y1)

(p1 − p2) = 1
2ρ⎛

⎝v2
2 − v1

2⎞
⎠ + ρg(y2 − y1).

Rearranging the equation gives Bernoulli’s equation:

p1 + 1
2ρv1

2 + ρgy1 = p2 + 1
2ρv2

2 + ρgy2.

This relation states that the mechanical energy of any part of the fluid changes as a result of the work done by the fluid
external to that part, due to varying pressure along the way. Since the two points were chosen arbitrarily, we can write
Bernoulli’s equation more generally as a conservation principle along the flow.

Bernoulli’s Equation

For an incompressible, frictionless fluid, the combination of pressure and the sum of kinetic and potential energy
densities is constant not only over time, but also along a streamline:
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(14.16)p + 1
2ρv2 + ρgy = constant

A special note must be made here of the fact that in a dynamic situation, the pressures at the same height in different parts
of the fluid may be different if they have different speeds of flow.

Analyzing Bernoulli’s Equation
According to Bernoulli’s equation, if we follow a small volume of fluid along its path, various quantities in the sum may
change, but the total remains constant. Bernoulli’s equation is, in fact, just a convenient statement of conservation of energy
for an incompressible fluid in the absence of friction.

The general form of Bernoulli’s equation has three terms in it, and it is broadly applicable. To understand it better, let us
consider some specific situations that simplify and illustrate its use and meaning.

Bernoulli’s equation for static fluids

First consider the very simple situation where the fluid is static—that is, v1 = v2 = 0. Bernoulli’s equation in that case is

p1 + ρgh1 = p2 + ρgh2.

We can further simplify the equation by setting h2 = 0. (Any height can be chosen for a reference height of zero, as is

often done for other situations involving gravitational force, making all other heights relative.) In this case, we get

p2 = p1 + ρgh1.

This equation tells us that, in static fluids, pressure increases with depth. As we go from point 1 to point 2 in the fluid, the
depth increases by h1 , and consequently, p2 is greater than p1 by an amount ρgh1 . In the very simplest case, p1 is zero

at the top of the fluid, and we get the familiar relationship p = ρgh . (Recall that p = ρgh and ΔUg = −mgh.) Thus,

Bernoulli’s equation confirms the fact that the pressure change due to the weight of a fluid is ρgh . Although we introduce

Bernoulli’s equation for fluid motion, it includes much of what we studied for static fluids earlier.

Bernoulli’s principle

Suppose a fluid is moving but its depth is constant—that is, h1 = h2 . Under this condition, Bernoulli’s equation becomes

p1 + 1
2ρv1

2 = p2 + 1
2ρv2

2.

Situations in which fluid flows at a constant depth are so common that this equation is often also called Bernoulli’s
principle, which is simply Bernoulli’s equation for fluids at constant depth. (Note again that this applies to a small volume
of fluid as we follow it along its path.) Bernoulli’s principle reinforces the fact that pressure drops as speed increases in a
moving fluid: If v2 is greater than v1 in the equation, then p2 must be less than p1 for the equality to hold.

Example 14.6

Calculating Pressure

In Example 14.5, we found that the speed of water in a hose increased from 1.96 m/s to 25.5 m/s going
from the hose to the nozzle. Calculate the pressure in the hose, given that the absolute pressure in the nozzle is

1.01 × 105 N/m2 (atmospheric, as it must be) and assuming level, frictionless flow.

Strategy

Level flow means constant depth, so Bernoulli’s principle applies. We use the subscript 1 for values in the hose
and 2 for those in the nozzle. We are thus asked to find p1 .

Solution

Solving Bernoulli’s principle for p1 yields

p1 = p2 + 1
2ρv2

2 − 1
2ρv1

2 = p2 + 1
2ρ(v2

2 − v1
2).
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Substituting known values,

p1 = 1.01 × 105 N/m2 +1
2(103 kg/m3)[(25.5 m/s)2 − (1.96 m/s)2]

= 4.24 × 105 N/m2.

Significance

This absolute pressure in the hose is greater than in the nozzle, as expected, since v is greater in the nozzle. The
pressure p2 in the nozzle must be atmospheric, because the water emerges into the atmosphere without other

changes in conditions.

Applications of Bernoulli’s Principle
Many devices and situations occur in which fluid flows at a constant height and thus can be analyzed with Bernoulli’s
principle.

Entrainment

People have long put the Bernoulli principle to work by using reduced pressure in high-velocity fluids to move things
about. With a higher pressure on the outside, the high-velocity fluid forces other fluids into the stream. This process is
called entrainment. Entrainment devices have been in use since ancient times as pumps to raise water to small heights, as is
necessary for draining swamps, fields, or other low-lying areas. Some other devices that use the concept of entrainment are
shown in Figure 14.31.

Figure 14.31 Entrainment devices use increased fluid speed to create low pressures, which then entrain one fluid into another.
(a) A Bunsen burner uses an adjustable gas nozzle, entraining air for proper combustion. (b) An atomizer uses a squeeze bulb to
create a jet of air that entrains drops of perfume. Paint sprayers and carburetors use very similar techniques to move their
respective liquids. (c) A common aspirator uses a high-speed stream of water to create a region of lower pressure. Aspirators may
be used as suction pumps in dental and surgical situations or for draining a flooded basement or producing a reduced pressure in a
vessel. (d) The chimney of a water heater is designed to entrain air into the pipe leading through the ceiling.

Velocity measurement

Figure 14.32 shows two devices that apply Bernoulli’s principle to measure fluid velocity. The manometer in part (a) is
connected to two tubes that are small enough not to appreciably disturb the flow. The tube facing the oncoming fluid creates
a dead spot having zero velocity ( v1 = 0 ) in front of it, while fluid passing the other tube has velocity v2 . This means that

Bernoulli’s principle as stated in

p1 + 1
2ρv1

2 = p2 + 1
2ρv2

2

becomes

p1 = p2 + 1
2ρv2

2.

Thus pressure p2 over the second opening is reduced by 1
2ρv2

2 , so the fluid in the manometer rises by h on the side

connected to the second opening, where
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h ∝ 1
2ρv2

2.

(Recall that the symbol ∝ means “proportional to.”) Solving for v2 , we see that

v2 ∝ h.

Part (b) shows a version of this device that is in common use for measuring various fluid velocities; such devices are
frequently used as air-speed indicators in aircraft.

Figure 14.32 Measurement of fluid speed based on Bernoulli’s principle. (a) A manometer is connected to two tubes that are
close together and small enough not to disturb the flow. Tube 1 is open at the end facing the flow. A dead spot having zero speed
is created there. Tube 2 has an opening on the side, so the fluid has a speed v across the opening; thus, pressure there drops. The

difference in pressure at the manometer is 1
2ρv2

2 , so h is proportional to 1
2ρv2

2. (b) This type of velocity measuring device is a

Prandtl tube, also known as a pitot tube.

A fire hose

All preceding applications of Bernoulli’s equation involved simplifying conditions, such as constant height or constant
pressure. The next example is a more general application of Bernoulli’s equation in which pressure, velocity, and height all
change.

Example 14.7

Calculating Pressure: A Fire Hose Nozzle

Fire hoses used in major structural fires have an inside diameter of 6.40 cm (Figure 14.33). Suppose such a hose

carries a flow of 40.0 L/s, starting at a gauge pressure of 1.62 × 106 N/m2 . The hose rises up 10.0 m along a

ladder to a nozzle having an inside diameter of 3.00 cm. What is the pressure in the nozzle?
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Figure 14.33 Pressure in the nozzle of this fire hose is less
than at ground level for two reasons: The water has to go uphill
to get to the nozzle, and speed increases in the nozzle. In spite of
its lowered pressure, the water can exert a large force on
anything it strikes by virtue of its kinetic energy. Pressure in the
water stream becomes equal to atmospheric pressure once it
emerges into the air.

Strategy

We must use Bernoulli’s equation to solve for the pressure, since depth is not constant.

Solution

Bernoulli’s equation is

p1 + 1
2ρv1

2 + ρgh1 = p2 + 1
2ρv2

2 + ρgh2

where subscripts 1 and 2 refer to the initial conditions at ground level and the final conditions inside the nozzle,
respectively. We must first find the speeds v1 and v2 . Since Q = A1 v1 , we get

v1 = Q
A1

= 40.0 × 10−3 m3 /s
π(3.20 × 10−2 m)2 = 12.4m/s.

Similarly, we find

v2 = 56.6 m/s.

This rather large speed is helpful in reaching the fire. Now, taking h1 to be zero, we solve Bernoulli’s equation

for p2 :

p2 = p1 + 1
2ρ(v1

2 − v2
2) − ρgh2.

Substituting known values yields

p2 = 1.62 × 106 N/m2 + 1
2(1000 kg/m3)[(12.4 m/s)2 − (56.6 m/s)2]

− (1000 kg/m3)(9.80 m/s2)(10.0 m)
= 0.

Significance

This value is a gauge pressure, since the initial pressure was given as a gauge pressure. Thus, the nozzle pressure
equals atmospheric pressure as it must, because the water exits into the atmosphere without changes in its
conditions.
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14.7 | Viscosity and Turbulence

Learning Objectives

By the end of this section, you will be able to:

• Explain what viscosity is

• Calculate flow and resistance with Poiseuille's law

• Explain how pressure drops due to resistance

• Calculate the Reynolds number for an object moving through a fluid

• Use the Reynolds number for a system to determine whether it is laminar or turbulent

• Describe the conditions under which an object has a terminal speed

In Applications of Newton’s Laws, which introduced the concept of friction, we saw that an object sliding across the
floor with an initial velocity and no applied force comes to rest due to the force of friction. Friction depends on the types of
materials in contact and is proportional to the normal force. We also discussed drag and air resistance in that same chapter.
We explained that at low speeds, the drag is proportional to the velocity, whereas at high speeds, drag is proportional to the
velocity squared. In this section, we introduce the forces of friction that act on fluids in motion. For example, a fluid flowing
through a pipe is subject to resistance, a type of friction, between the fluid and the walls. Friction also occurs between the
different layers of fluid. These resistive forces affect the way the fluid flows through the pipe.

Viscosity and Laminar Flow
When you pour yourself a glass of juice, the liquid flows freely and quickly. But if you pour maple syrup on your pancakes,
that liquid flows slowly and sticks to the pitcher. The difference is fluid friction, both within the fluid itself and between the
fluid and its surroundings. We call this property of fluids viscosity. Juice has low viscosity, whereas syrup has high viscosity.

The precise definition of viscosity is based on laminar, or nonturbulent, flow. Figure 14.34 shows schematically how
laminar and turbulent flow differ. When flow is laminar, layers flow without mixing. When flow is turbulent, the layers mix,
and significant velocities occur in directions other than the overall direction of flow.

Figure 14.34 (a) Laminar flow occurs in layers without mixing. Notice that viscosity causes drag between layers as well as
with the fixed surface. The speed near the bottom of the flow ( vb ) is less than speed near the top ( vt ) because in this case, the

surface of the containing vessel is at the bottom. (b) An obstruction in the vessel causes turbulent flow. Turbulent flow mixes the
fluid. There is more interaction, greater heating, and more resistance than in laminar flow.

Turbulence is a fluid flow in which layers mix together via eddies and swirls. It has two main causes. First, any obstruction
or sharp corner, such as in a faucet, creates turbulence by imparting velocities perpendicular to the flow. Second, high speeds
cause turbulence. The drag between adjacent layers of fluid and between the fluid and its surroundings can form swirls and
eddies if the speed is great enough. In Figure 14.35, the speed of the accelerating smoke reaches the point that it begins to
swirl due to the drag between the smoke and the surrounding air.
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Figure 14.35 Smoke rises smoothly for a while and then
begins to form swirls and eddies. The smooth flow is called
laminar flow, whereas the swirls and eddies typify turbulent
flow. Smoke rises more rapidly when flowing smoothly than
after it becomes turbulent, suggesting that turbulence poses
more resistance to flow. (credit: “Creativity103”/Flickr)

Figure 14.36 shows how viscosity is measured for a fluid. The fluid to be measured is placed between two parallel plates.
The bottom plate is held fixed, while the top plate is moved to the right, dragging fluid with it. The layer (or lamina) of
fluid in contact with either plate does not move relative to the plate, so the top layer moves at speed v while the bottom
layer remains at rest. Each successive layer from the top down exerts a force on the one below it, trying to drag it along,
producing a continuous variation in speed from v to 0 as shown. Care is taken to ensure that the flow is laminar, that is, the
layers do not mix. The motion in the figure is like a continuous shearing motion. Fluids have zero shear strength, but the
rate at which they are sheared is related to the same geometrical factors A and L as is shear deformation for solids. In the
diagram, the fluid is initially at rest. The layer of fluid in contact with the moving plate is accelerated and starts to move due
to the internal friction between moving plate and the fluid. The next layer is in contact with the moving layer; since there is
internal friction between the two layers, it also accelerates, and so on through the depth of the fluid. There is also internal
friction between the stationary plate and the lowest layer of fluid, next to the station plate. The force is required to keep the
plate moving at a constant velocity due to the internal friction.

Figure 14.36 Measurement of viscosity for laminar flow of
fluid between two plates of area A. The bottom plate is fixed.
When the top plate is pushed to the right, it drags the fluid along
with it.

A force F is required to keep the top plate in Figure 14.36 moving at a constant velocity v, and experiments have shown
that this force depends on four factors. First, F is directly proportional to v (until the speed is so high that turbulence
occurs—then a much larger force is needed, and it has a more complicated dependence on v). Second, F is proportional
to the area A of the plate. This relationship seems reasonable, since A is directly proportional to the amount of fluid being
moved. Third, F is inversely proportional to the distance between the plates L. This relationship is also reasonable; L is
like a lever arm, and the greater the lever arm, the less the force that is needed. Fourth, F is directly proportional to the
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coefficient of viscosity, η . The greater the viscosity, the greater the force required. These dependencies are combined into

the equation

F = ηvA
L .

This equation gives us a working definition of fluid viscosity η . Solving for η gives

(14.17)η = FL
vA

which defines viscosity in terms of how it is measured.

The SI unit of viscosity is N ⋅ m/⎡
⎣(m/s)m2⎤

⎦ = ⎛
⎝N/m2⎞

⎠s or Pa ⋅ s . Table 14.4 lists the coefficients of viscosity for various

fluids. Viscosity varies from one fluid to another by several orders of magnitude. As you might expect, the viscosities of
gases are much less than those of liquids, and these viscosities often depend on temperature.

Fluid Temperature
(°C)

Viscosity
η (Pa ⋅ s)

0 0.0171

20 0.0181

40 0.0190

Air

100 0.0218

Ammonia 20 0.00974

Carbon dioxide 20 0.0147

Helium 20 0.0196

Hydrogen 0 0.0090

Mercury 20 0.0450

Oxygen 20 0.0203

Steam 100 0.0130

0 1.792

20 1.002

37 0.6947

40 0.653

Liquid water

100 0.282

20 3.015Whole blood

37 2.084

20 1.810Blood plasma

37 1.257

Ethyl alcohol 20 1.20

Methanol 20 0.584

Table 14.4 Coefficients of Viscosity of Various Fluids
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Fluid Temperature
(°C)

Viscosity
η (Pa ⋅ s)

Oil (heavy machine) 20 660

Oil (motor, SAE 10) 30 200

Oil (olive) 20 138

Glycerin 20 1500

Honey 20 2000–10000

Maple syrup 20 2000–3000

Milk 20 3.0

Oil (corn) 20 65

Table 14.4 Coefficients of Viscosity of Various Fluids

Laminar Flow Confined to Tubes: Poiseuille’s Law
What causes flow? The answer, not surprisingly, is a pressure difference. In fact, there is a very simple relationship between
horizontal flow and pressure. Flow rate Q is in the direction from high to low pressure. The greater the pressure differential
between two points, the greater the flow rate. This relationship can be stated as

Q = p2 − p1
R

where p1 and p2 are the pressures at two points, such as at either end of a tube, and R is the resistance to flow. The

resistance R includes everything, except pressure, that affects flow rate. For example, R is greater for a long tube than for a
short one. The greater the viscosity of a fluid, the greater the value of R. Turbulence greatly increases R, whereas increasing
the diameter of a tube decreases R.

If viscosity is zero, the fluid is frictionless and the resistance to flow is also zero. Comparing frictionless flow in a tube
to viscous flow, as in Figure 14.37, we see that for a viscous fluid, speed is greatest at midstream because of drag at the
boundaries. We can see the effect of viscosity in a Bunsen burner flame [part (c)], even though the viscosity of natural gas
is small.

Chapter 14 | Fluid Mechanics 731



Figure 14.37 (a) If fluid flow in a tube has negligible resistance, the speed is the same all
across the tube. (b) When a viscous fluid flows through a tube, its speed at the walls is zero,
increasing steadily to its maximum at the center of the tube. (c) The shape of a Bunsen burner
flame is due to the velocity profile across the tube. (credit c: modification of work by Jason
Woodhead)

The resistance R to laminar flow of an incompressible fluid with viscosity η through a horizontal tube of uniform radius r

and length l, is given by

(14.18)R = 8ηl
πr4.

This equation is called Poiseuille’s law for resistance, named after the French scientist J. L. Poiseuille (1799–1869), who
derived it in an attempt to understand the flow of blood through the body.

Let us examine Poiseuille’s expression for R to see if it makes good intuitive sense. We see that resistance is directly
proportional to both fluid viscosity η and the length l of a tube. After all, both of these directly affect the amount of friction

encountered—the greater either is, the greater the resistance and the smaller the flow. The radius r of a tube affects the
resistance, which again makes sense, because the greater the radius, the greater the flow (all other factors remaining the
same). But it is surprising that r is raised to the fourth power in Poiseuille’s law. This exponent means that any change in
the radius of a tube has a very large effect on resistance. For example, doubling the radius of a tube decreases resistance by

a factor of 24 = 16 .

Taken together, Q = p2 − p1
R and R = 8ηl

πr4 give the following expression for flow rate:

(14.19)
Q = (p2 − p1)πr4

8ηl .

This equation describes laminar flow through a tube. It is sometimes called Poiseuille’s law for laminar flow, or simply
Poiseuille’s law (Figure 14.38).
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Figure 14.38 Poiseuille’s law applies to laminar flow of an
incompressible fluid of viscosity η through a tube of length l

and radius r. The direction of flow is from greater to lower
pressure. Flow rate Q is directly proportional to the pressure
difference p2 − p1 , and inversely proportional to the length l

of the tube and viscosity η of the fluid. Flow rate increases with

radius by a factor of r4 .

Example 14.8

Using Flow Rate: Air Conditioning Systems

An air conditioning system is being designed to supply air at a gauge pressure of 0.054 Pa at a temperature of
20 °C. The air is sent through an insulated, round conduit with a diameter of 18.00 cm. The conduit is 20-meters

long and is open to a room at atmospheric pressure 101.30 kPa. The room has a length of 12 meters, a width of 6
meters, and a height of 3 meters. (a) What is the volume flow rate through the pipe, assuming laminar flow? (b)
Estimate the length of time to completely replace the air in the room. (c) The builders decide to save money by
using a conduit with a diameter of 9.00 cm. What is the new flow rate?

Strategy

Assuming laminar flow, Poiseuille’s law states that

Q = (p2 − p1)πr4

8ηl = dV
dt .

We need to compare the artery radius before and after the flow rate reduction. Note that we are given the diameter
of the conduit, so we must divide by two to get the radius.

Solution
a. Assuming a constant pressure difference and using the viscosity η = 0.0181 mPa ⋅ s ,

Q = (0.054 Pa)(3.14)(0.09 m)4

8⎛
⎝0.0181 × 10−3 Pa ⋅ s⎞

⎠(20 m)
= 3.84 × 10−3 m3

s .

b. Assuming constant flow Q = dV
dt ≈ ΔV

Δt

Δt = ΔV
Q = (12 m)(6 m)(3 m)

3.84 × 10−3 m3
s

= 5.63 × 104 s = 15.63 hr.

c. Using laminar flow, Poiseuille’s law yields

Q = (0.054 Pa)(3.14)(0.045 m)4

8⎛
⎝0.0181 × 10−3 Pa ⋅ s⎞

⎠(20 m)
= 2.40 × 10−4 m3

s .

Thus, the radius of the conduit decreases by half reduces the flow rate to 6.25% of the original value.

Significance

In general, assuming laminar flow, decreasing the radius has a more dramatic effect than changing the length. If
the length is increased and all other variables remain constant, the flow rate is decreased:
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QA
QB

=

(p2 − p1)πr A
4

8ηl A
(p2 − p1)πrB

4

8ηlB

= lB
lA

QB = lA
lB

QA.

Doubling the length cuts the flow rate to one-half the original flow rate.

If the radius is decreased and all other variables remain constant, the volume flow rate decreases by a much larger
factor.

QA
QB

=

(p2 − p1)πr A
4

8ηl A
(p2 − p1)πrB

4

8ηlB

= ⎛
⎝
rA
rB

⎞
⎠

4

QB = ⎛
⎝
rB
rA

⎞
⎠

4
QA

Cutting the radius in half decreases the flow rate to one-sixteenth the original flow rate.

Flow and Resistance as Causes of Pressure Drops
Water pressure in homes is sometimes lower than normal during times of heavy use, such as hot summer days. The drop
in pressure occurs in the water main before it reaches individual homes. Let us consider flow through the water main as
illustrated in Figure 14.39. We can understand why the pressure p1 to the home drops during times of heavy use by

rearranging the equation for flow rate:

Q = p2 − p1
R

p2 – p1 = RQ.

In this case, p2 is the pressure at the water works and R is the resistance of the water main. During times of heavy use,

the flow rate Q is large. This means that p2 − p1 must also be large. Thus p1 must decrease. It is correct to think of flow

and resistance as causing the pressure to drop from p2 to p1 . The equation p2 − p1 = RQ is valid for both laminar and

turbulent flows.

Figure 14.39 During times of heavy use, there is a significant
pressure drop in a water main, and p1 supplied to users is

significantly less than p2 created at the water works. If the

flow is very small, then the pressure drop is negligible, and
p2 ≈ p1 .
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We can also use p2 − p1 = RQ to analyze pressure drops occurring in more complex systems in which the tube radius

is not the same everywhere. Resistance is much greater in narrow places, such as in an obstructed coronary artery. For a
given flow rate Q, the pressure drop is greatest where the tube is most narrow. This is how water faucets control flow.
Additionally, R is greatly increased by turbulence, and a constriction that creates turbulence greatly reduces the pressure
downstream. Plaque in an artery reduces pressure and hence flow, both by its resistance and by the turbulence it creates.

Measuring Turbulence
An indicator called the Reynolds number NR can reveal whether flow is laminar or turbulent. For flow in a tube of

uniform diameter, the Reynolds number is defined as

(14.20)NR = 2ρvr
η (fl w in tube)

where ρ is the fluid density, v its speed, η its viscosity, and r the tube radius. The Reynolds number is a dimensionless

quantity. Experiments have revealed that NR is related to the onset of turbulence. For NR below about 2000, flow is

laminar. For NR above about 3000, flow is turbulent.

For values of NR between about 2000 and 3000, flow is unstable—that is, it can be laminar, but small obstructions and

surface roughness can make it turbulent, and it may oscillate randomly between being laminar and turbulent. In fact, the
flow of a fluid with a Reynolds number between 2000 and 3000 is a good example of chaotic behavior. A system is defined
to be chaotic when its behavior is so sensitive to some factor that it is extremely difficult to predict. It is difficult, but not
impossible, to predict whether flow is turbulent or not when a fluid’s Reynold’s number falls in this range due to extremely
sensitive dependence on factors like roughness and obstructions on the nature of the flow. A tiny variation in one factor has
an exaggerated (or nonlinear) effect on the flow.

Example 14.9

Using Flow Rate: Turbulent Flow or Laminar Flow

In Example 14.8, we found the volume flow rate of an air conditioning system to be Q = 3.84 × 10−3 m3 /s.
This calculation assumed laminar flow. (a) Was this a good assumption? (b) At what velocity would the flow
become turbulent?

Strategy

To determine if the flow of air through the air conditioning system is laminar, we first need to find the velocity,
which can be found by

Q = Av = πr2 v.

Then we can calculate the Reynold’s number, using the equation below, and determine if it falls in the range for
laminar flow

R = 2ρvr
η .

Solution
a. Using the values given:

v = Q
πr2 = 3.84 × 10−3 m3

s
3.14(0.09 m)2 = 0.15m

s

R = 2ρvr
η =

2⎛
⎝1.23 kg

m3
⎞
⎠

⎛
⎝0.15 m

s
⎞
⎠(0.09 m)

0.0181 × 10−3 Pa ⋅ s
= 1835.

Since the Reynolds number is 1835 < 2000, the flow is laminar and not turbulent. The assumption that
the flow was laminar is valid.
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b. To find the maximum speed of the air to keep the flow laminar, consider the Reynold’s number.

R = 2ρvr
η ≤ 2000

v =
2000⎛

⎝0.0181 × 10−3 Pa ⋅ s⎞
⎠

2⎛
⎝1.23 kg

m3
⎞
⎠(0.09 m)

= 0.16m
s .

Significance

When transferring a fluid from one point to another, it desirable to limit turbulence. Turbulence results in wasted
energy, as some of the energy intended to move the fluid is dissipated when eddies are formed. In this case, the air
conditioning system will become less efficient once the velocity exceeds 0.16 m/s, since this is the point at which
turbulence will begin to occur.
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absolute pressure

Archimedes’ principle

Bernoulli’s equation

Bernoulli’s principle

buoyant force

density

flow rate

fluids

gauge pressure

hydraulic jack

hydrostatic equilibrium

ideal fluid

laminar flow

Pascal’s principle

Poiseuille’s law

Poiseuille’s law for resistance

pressure

Reynolds number

specific gravity

turbulence

turbulent flow

viscosity

CHAPTER 14 REVIEW

KEY TERMS
sum of gauge pressure and atmospheric pressure

buoyant force on an object equals the weight of the fluid it displaces

equation resulting from applying conservation of energy to an incompressible frictionless fluid:

p + 1
2ρv2 + ρgh = constant, throughout the fluid

Bernoulli’s equation applied at constant depth:

p1 + 1
2ρv1

2 = p2 + 1
2ρv2

2

net upward force on any object in any fluid due to the pressure difference at different depths

mass per unit volume of a substance or object

abbreviated Q, it is the volume V that flows past a particular point during a time t, or Q = dV /dt

liquids and gases; a fluid is a state of matter that yields to shearing forces

pressure relative to atmospheric pressure

simple machine that uses cylinders of different diameters to distribute force

state at which water is not flowing, or is static

fluid with negligible viscosity

type of fluid flow in which layers do not mix

change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the
fluid and to the walls of its container

rate of laminar flow of an incompressible fluid in a tube: Q = (p2 − p1)πr4

8ηl .

resistance to laminar flow of an incompressible fluid in a tube: R = 8ηl
πr4

force per unit area exerted perpendicular to the area over which the force acts

dimensionless parameter that can reveal whether a particular flow is laminar or turbulent

ratio of the density of an object to a fluid (usually water)

fluid flow in which layers mix together via eddies and swirls

type of fluid flow in which layers mix together via eddies and swirls

measure of the internal friction in a fluid

KEY EQUATIONS

Density of a sample at constant density ρ = m
V

Pressure p = F
A

Pressure at a depth h in a fluid of constant density p = p0 + ρgh

Change of pressure with height in a
constant-density fluid

dp
dy = −ρg

Chapter 14 | Fluid Mechanics 737



Absolute pressure pabs = pg + patm

Pascal’s principle
F1
A1

= F2
A2

Volume flow rate Q = dV
dt

Continuity equation (constant density) A1 v1 = A2 v2

Continuity equation (general form) ρ1 A1 v1 = ρ2 A2 v2

Bernoulli’s equation p + 1
2ρv2 + ρgy = constant

Viscosity η = FL
vA

Poiseuille’s law for resistance R = 8ηl
πr4

Poiseuille’s law Q = (p2 − p1)πr4

8ηl

SUMMARY

14.1 Fluids, Density, and Pressure

• A fluid is a state of matter that yields to sideways or shearing forces. Liquids and gases are both fluids. Fluid statics
is the physics of stationary fluids.

• Density is the mass per unit volume of a substance or object, defined as ρ = m/V . The SI unit of density is kg/m3.

• Pressure is the force per unit perpendicular area over which the force is applied, p = F/A. The SI unit of pressure

is the pascal: 1 Pa = 1 N/m2 .

• Pressure due to the weight of a liquid of constant density is given by p = ρ gh , where p is the pressure, h is the

depth of the liquid, ρ is the density of the liquid, and g is the acceleration due to gravity.

14.2 Measuring Pressure

• Gauge pressure is the pressure relative to atmospheric pressure.

• Absolute pressure is the sum of gauge pressure and atmospheric pressure.

• Open-tube manometers have U-shaped tubes and one end is always open. They are used to measure pressure. A
mercury barometer is a device that measures atmospheric pressure.

• The SI unit of pressure is the pascal (Pa), but several other units are commonly used.

14.3 Pascal's Principle and Hydraulics

• Pressure is force per unit area.

• A change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the
walls of its container.

• A hydraulic system is an enclosed fluid system used to exert forces.

14.4 Archimedes’ Principle and Buoyancy

• Buoyant force is the net upward force on any object in any fluid. If the buoyant force is greater than the object’s
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weight, the object will rise to the surface and float. If the buoyant force is less than the object’s weight, the object
will sink. If the buoyant force equals the object’s weight, the object can remain suspended at its present depth. The
buoyant force is always present and acting on any object immersed either partially or entirely in a fluid.

• Archimedes’ principle states that the buoyant force on an object equals the weight of the fluid it displaces.

14.5 Fluid Dynamics

• Flow rate Q is defined as the volume V flowing past a point in time t, or Q = dV
dt where V is volume and t is time.

The SI unit of flow rate is m3 /s, but other rates can be used, such as L/min.

• Flow rate and velocity are related by Q = Av where A is the cross-sectional area of the flow and v is its average

velocity.

• The equation of continuity states that for an incompressible fluid, the mass flowing into a pipe must equal the mass
flowing out of the pipe.

14.6 Bernoulli’s Equation

• Bernoulli’s equation states that the sum on each side of the following equation is constant, or the same at any two
points in an incompressible frictionless fluid:

p1 + 1
2ρv1

2 + ρgh1 = p2 + 1
2ρv2

2 + ρgh2.

• Bernoulli’s principle is Bernoulli’s equation applied to situations in which the height of the fluid is constant. The
terms involving depth (or height h) subtract out, yielding

p1 + 1
2ρv1

2 = p2 + 1
2ρv2

2.

• Bernoulli’s principle has many applications, including entrainment and velocity measurement.

14.7 Viscosity and Turbulence

• Laminar flow is characterized by smooth flow of the fluid in layers that do not mix.

• Turbulence is characterized by eddies and swirls that mix layers of fluid together.

• Fluid viscosity η is due to friction within a fluid.

• Flow is proportional to pressure difference and inversely proportional to resistance:

Q = p − 2p1
R .

• The pressure drop caused by flow and resistance is given by p2 – p1 = RQ .

• The Reynolds number NR can reveal whether flow is laminar or turbulent. It is NR = 2ρvr
η .

• For NR below about 2000, flow is laminar. For NR above about 3000, flow is turbulent. For values of NR

between 2000 and 3000, it may be either or both.

CONCEPTUAL QUESTIONS

14.1 Fluids, Density, and Pressure

1. Which of the following substances are fluids at room
temperature and atmospheric pressure: air, mercury, water,
glass?

2. Why are gases easier to compress than liquids and
solids?

3. Explain how the density of air varies with altitude.

4. The image shows a glass of ice water filled to the brim.
Will the water overflow when the ice melts? Explain your
answer.
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5. How is pressure related to the sharpness of a knife and
its ability to cut?

6. Why is a force exerted by a static fluid on a surface
always perpendicular to the surface?

7. Imagine that in a remote location near the North Pole,
a chunk of ice floats in a lake. Next to the lake, a glacier
with the same volume as the floating ice sits on land. If both
chunks of ice should melt due to rising global temperatures,
and the melted ice all goes into the lake, which one would
cause the level of the lake to rise the most? Explain.

8. In ballet, dancing en pointe (on the tips of the toes) is
much harder on the toes than normal dancing or walking.
Explain why, in terms of pressure.

9. Atmospheric pressure exerts a large force (equal to the
weight of the atmosphere above your body—about 10 tons)
on the top of your body when you are lying on the beach
sunbathing. Why are you able to get up?

10. Why does atmospheric pressure decrease more rapidly
than linearly with altitude?

11. The image shows how sandbags placed around a leak
outside a river levee can effectively stop the flow of water
under the levee. Explain how the small amount of water
inside the column of sandbags is able to balance the much
larger body of water behind the levee.

12. Is there a net force on a dam due to atmospheric
pressure? Explain your answer.

13. Does atmospheric pressure add to the gas pressure
in a rigid tank? In a toy balloon? When, in general, does
atmospheric pressure not affect the total pressure in a
fluid?

14. You can break a strong wine bottle by pounding a
cork into it with your fist, but the cork must press directly
against the liquid filling the bottle—there can be no air
between the cork and liquid. Explain why the bottle breaks
only if there is no air between the cork and liquid.

14.2 Measuring Pressure

15. Explain why the fluid reaches equal levels on either
side of a manometer if both sides are open to the
atmosphere, even if the tubes are of different diameters.

14.3 Pascal's Principle and Hydraulics

16. Suppose the master cylinder in a hydraulic system is at
a greater height than the cylinder it is controlling. Explain
how this will affect the force produced at the cylinder that
is being controlled.

14.4 Archimedes’ Principle and Buoyancy

17. More force is required to pull the plug in a full bathtub
than when it is empty. Does this contradict Archimedes’
principle? Explain your answer.

18. Do fluids exert buoyant forces in a “weightless”
environment, such as in the space shuttle? Explain your
answer.

19. Will the same ship float higher in salt water than in
freshwater? Explain your answer.

20. Marbles dropped into a partially filled bathtub sink to
the bottom. Part of their weight is supported by buoyant
force, yet the downward force on the bottom of the tub
increases by exactly the weight of the marbles. Explain
why.

14.5 Fluid Dynamics

21. Many figures in the text show streamlines. Explain
why fluid velocity is greatest where streamlines are closest
together. (Hint: Consider the relationship between fluid
velocity and the cross-sectional area through which the
fluid flows.)

14.6 Bernoulli’s Equation

22. You can squirt water from a garden hose a
considerably greater distance by partially covering the
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opening with your thumb. Explain how this works.

23. Water is shot nearly vertically upward in a decorative
fountain and the stream is observed to broaden as it rises.
Conversely, a stream of water falling straight down from a
faucet narrows. Explain why.

24. Look back to Figure 14.29. Answer the following
two questions. Why is po less than atmospheric? Why is

po greater than pi ?

25. A tube with a narrow segment designed to enhance
entrainment is called a Venturi, such as shown below.
Venturis are very commonly used in carburetors and
aspirators. How does this structure bolster entrainment?

26. Some chimney pipes have a T-shape, with a crosspiece
on top that helps draw up gases whenever there is even
a slight breeze. Explain how this works in terms of
Bernoulli’s principle.

27. Is there a limit to the height to which an entrainment
device can raise a fluid? Explain your answer.

28. Why is it preferable for airplanes to take off into the
wind rather than with the wind?

29. Roofs are sometimes pushed off vertically during a
tropical cyclone, and buildings sometimes explode outward
when hit by a tornado. Use Bernoulli’s principle to explain
these phenomena.

30. It is dangerous to stand close to railroad tracks when
a rapidly moving commuter train passes. Explain why
atmospheric pressure would push you toward the moving
train.

31. Water pressure inside a hose nozzle can be less than
atmospheric pressure due to the Bernoulli effect. Explain in
terms of energy how the water can emerge from the nozzle
against the opposing atmospheric pressure.

32. David rolled down the window on his car while
driving on the freeway. An empty plastic bag on the floor
promptly flew out the window. Explain why.

33. Based on Bernoulli’s equation, what are three forms of
energy in a fluid? (Note that these forms are conservative,
unlike heat transfer and other dissipative forms not
included in Bernoulli’s equation.)

34. The old rubber boot shown below has two leaks. To
what maximum height can the water squirt from Leak 1?
How does the velocity of water emerging from Leak 2
differ from that of Leak 1? Explain your responses in terms
of energy.

35. Water pressure inside a hose nozzle can be less than
atmospheric pressure due to the Bernoulli effect. Explain in
terms of energy how the water can emerge from the nozzle
against the opposing atmospheric pressure.

14.7 Viscosity and Turbulence

36. Explain why the viscosity of a liquid decreases with
temperature, that is, how might an increase in temperature
reduce the effects of cohesive forces in a liquid? Also
explain why the viscosity of a gas increases with
temperature, that is, how does increased gas temperature
create more collisions between atoms and molecules?

37. When paddling a canoe upstream, it is wisest to travel
as near to the shore as possible. When canoeing
downstream, it is generally better to stay near the middle.
Explain why.

38. Plumbing usually includes air-filled tubes near water
faucets (see the following figure). Explain why they are
needed and how they work.

39. Doppler ultrasound can be used to measure the speed
of blood in the body. If there is a partial constriction of an
artery, where would you expect blood speed to be greatest:
at or after the constriction? What are the two distinct causes
of higher resistance in the constriction?

40. Sink drains often have a device such as that shown
below to help speed the flow of water. How does this work?
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PROBLEMS

14.1 Fluids, Density, and Pressure

41. Gold is sold by the troy ounce (31.103 g). What is the
volume of 1 troy ounce of pure gold?

42. Mercury is commonly supplied in flasks containing
34.5 kg (about 76 lb.). What is the volume in liters of this
much mercury?

43. What is the mass of a deep breath of air having a
volume of 2.00 L? Discuss the effect taking such a breath
has on your body’s volume and density.

44. A straightforward method of finding the density of an
object is to measure its mass and then measure its volume
by submerging it in a graduated cylinder. What is the

density of a 240-g rock that displaces 89.0 cm3 of water?

(Note that the accuracy and practical applications of this
technique are more limited than a variety of others that are
based on Archimedes’ principle.)

45. Suppose you have a coffee mug with a circular cross-
section and vertical sides (uniform radius). What is its
inside radius if it holds 375 g of coffee when filled to a
depth of 7.50 cm? Assume coffee has the same density as
water.

46. A rectangular gasoline tank can hold 50.0 kg of
gasoline when full. What is the depth of the tank if it is
0.500-m wide by 0.900-m long? (b) Discuss whether this
gas tank has a reasonable volume for a passenger car.

47. A trash compactor can compress its contents to 0.350
times their original volume. Neglecting the mass of air
expelled, by what factor is the density of the rubbish
increased?

48. A 2.50-kg steel gasoline can holds 20.0 L of gasoline
when full. What is the average density of the full gas can,
taking into account the volume occupied by steel as well as
by gasoline?

49. What is the density of 18.0-karat gold that is a mixture
of 18 parts gold, 5 parts silver, and 1 part copper? (These

values are parts by mass, not volume.) Assume that this is
a simple mixture having an average density equal to the
weighted densities of its constituents.

50. The tip of a nail exerts tremendous pressure when
hit by a hammer because it exerts a large force over a
small area. What force must be exerted on a nail with
a circular tip of 1.00-mm diameter to create a pressure

of 3.00 × 109 N/m2 ? (This high pressure is possible

because the hammer striking the nail is brought to rest in
such a short distance.)

51. A glass tube contains mercury. What would be the
height of the column of mercury which would create
pressure equal to 1.00 atm?

52. The greatest ocean depths on Earth are found in the
Marianas Trench near the Philippines. Calculate the
pressure due to the ocean at the bottom of this trench, given
its depth is 11.0 km and assuming the density of seawater is
constant all the way down.

53. Verify that the SI unit of hρg is N/m2 .

54. What pressure is exerted on the bottom of a gas tank
that is 0.500-m wide and 0.900-m long and can hold 50.0
kg of gasoline when full?

55. A dam is used to hold back a river. The dam has a
height H = 12 m and a width W = 10 m. Assume that

the density of the water is ρ = 1000 kg/m3. (a) Determine

the net force on the dam. (b) Why does the thickness of the
dam increase with depth?
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14.2 Measuring Pressure

56. Find the gauge and absolute pressures in the balloon
and peanut jar shown in Figure 14.12, assuming the
manometer connected to the balloon uses water and the
manometer connected to the jar contains mercury. Express
in units of centimeters of water for the balloon and
millimeters of mercury for the jar, taking h = 0.0500m for

each.

57. How tall must a water-filled manometer be to measure
blood pressure as high as 300 mm Hg?

58. Assuming bicycle tires are perfectly flexible and
support the weight of bicycle and rider by pressure alone,
calculate the total area of the tires in contact with the
ground if a bicycle and rider have a total mass of 80.0 kg,

and the gauge pressure in the tires is 3.50 × 105 Pa .

14.3 Pascal's Principle and Hydraulics

59. How much pressure is transmitted in the hydraulic
system considered in Example 14.3? Express your
answer in atmospheres.

60. What force must be exerted on the master cylinder of a
hydraulic lift to support the weight of a 2000-kg car (a large
car) resting on a second cylinder? The master cylinder has
a 2.00-cm diameter and the second cylinder has a 24.0-cm
diameter.

61. A host pours the remnants of several bottles of wine
into a jug after a party. The host then inserts a cork with a
2.00-cm diameter into the bottle, placing it in direct contact
with the wine. The host is amazed when the host pounds the
cork into place and the bottom of the jug (with a 14.0-cm
diameter) breaks away. Calculate the extra force exerted
against the bottom if he pounded the cork with a 120-N
force.

62. A certain hydraulic system is designed to exert a force
100 times as large as the one put into it. (a) What must be

the ratio of the area of the cylinder that is being controlled
to the area of the master cylinder? (b) What must be the
ratio of their diameters? (c) By what factor is the distance
through which the output force moves reduced relative to
the distance through which the input force moves? Assume
no losses due to friction.

63. Verify that work input equals work output for a
hydraulic system assuming no losses due to friction. Do
this by showing that the distance the output force moves
is reduced by the same factor that the output force is
increased. Assume the volume of the fluid is constant.
What effect would friction within the fluid and between
components in the system have on the output force? How
would this depend on whether or not the fluid is moving?

14.4 Archimedes’ Principle and Buoyancy

64. What fraction of ice is submerged when it floats in
freshwater, given the density of water at 0 °C is very close

to 1000 kg/m3 ?

65. If a person’s body has a density of 995 kg/m3 , what

fraction of the body will be submerged when floating gently
in (a) freshwater? (b) In salt water with a density of

1027 kg/m3 ?

66. A rock with a mass of 540 g in air is found to have an
apparent mass of 342 g when submerged in water. (a) What
mass of water is displaced? (b) What is the volume of the
rock? (c) What is its average density? Is this consistent with
the value for granite?

67. Archimedes’ principle can be used to calculate the
density of a fluid as well as that of a solid. Suppose a chunk
of iron with a mass of 390.0 g in air is found to have an
apparent mass of 350.5 g when completely submerged in
an unknown liquid. (a) What mass of fluid does the iron
displace? (b) What is the volume of iron, using its density
as given in Table 14.1? (c) Calculate the fluid’s density
and identify it.

68. Calculate the buoyant force on a 2.00-L helium
balloon. (b) Given the mass of the rubber in the balloon is
1.50 g, what is the net vertical force on the balloon if it is
let go? Neglect the volume of the rubber.

69. What is the density of a woman who floats in fresh
water with 4.00% of her volume above the surface? (This

could be measured by placing her in a tank with marks on
the side to measure how much water she displaces when
floating and when held under water.) (b) What percent
of her volume is above the surface when she floats in
seawater?
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70. A man has a mass of 80 kg and a density of

955kg/m3 (excluding the air in his lungs). (a) Calculate

his volume. (b) Find the buoyant force air exerts on him. (c)
What is the ratio of the buoyant force to his weight?

71. A simple compass can be made by placing a small bar
magnet on a cork floating in water. (a) What fraction of a
plain cork will be submerged when floating in water? (b) If
the cork has a mass of 10.0 g and a 20.0-g magnet is placed
on it, what fraction of the cork will be submerged? (c) Will
the bar magnet and cork float in ethyl alcohol?

72. What percentage of an iron anchor’s weight will be
supported by buoyant force when submerged in salt water?

73. Referring to Figure 14.20, prove that the buoyant
force on the cylinder is equal to the weight of the fluid
displaced (Archimedes’ principle). You may assume that
the buoyant force is F2 − F1 and that the ends of the

cylinder have equal areas A . Note that the volume of the

cylinder (and that of the fluid it displaces) equals
(h2 − h1)A .

74. A 75.0-kg man floats in freshwater with 3.00% of
his volume above water when his lungs are empty, and
5.00% of his volume above water when his lungs are full.
Calculate the volume of air he inhales—called his lung
capacity—in liters. (b) Does this lung volume seem
reasonable?

14.5 Fluid Dynamics

75. What is the average flow rate in cm3 /s of gasoline to

the engine of a car traveling at 100 km/h if it averages 10.0
km/L?

76. The heart of a resting adult pumps blood at a rate of

5.00 L/min. (a) Convert this to cm3 /s . (b) What is this rate

in m3 /s ?

77. The Huka Falls on the Waikato River is one of New
Zealand’s most visited natural tourist attractions. On
average, the river has a flow rate of about 300,000 L/s.
At the gorge, the river narrows to 20-m wide and averages
20-m deep. (a) What is the average speed of the river in the
gorge? (b) What is the average speed of the water in the
river downstream of the falls when it widens to 60 m and
its depth increases to an average of 40 m?

78. (a) Estimate the time it would take to fill a private
swimming pool with a capacity of 80,000 L using a garden
hose delivering 60 L/min. (b) How long would it take if you

could divert a moderate size river, flowing at 5000 m3 /s

into the pool?

79. What is the fluid speed in a fire hose with a 9.00-cm
diameter carrying 80.0 L of water per second? (b) What is
the flow rate in cubic meters per second? (c) Would your
answers be different if salt water replaced the fresh water in
the fire hose?

80. Water is moving at a velocity of 2.00 m/s through
a hose with an internal diameter of 1.60 cm. (a) What is
the flow rate in liters per second? (b) The fluid velocity in
this hose’s nozzle is 15.0 m/s. What is the nozzle’s inside
diameter?

81. Prove that the speed of an incompressible fluid
through a constriction, such as in a Venturi tube, increases
by a factor equal to the square of the factor by which the
diameter decreases. (The converse applies for flow out of a
constriction into a larger-diameter region.)

82. Water emerges straight down from a faucet with a
1.80-cm diameter at a speed of 0.500 m/s. (Because of the
construction of the faucet, there is no variation in speed

across the stream.) (a) What is the flow rate in cm3 /s ?

(b) What is the diameter of the stream 0.200 m below the
faucet? Neglect any effects due to surface tension.

14.6 Bernoulli’s Equation

83. Verify that pressure has units of energy per unit
volume.

84. Suppose you have a wind speed gauge like the pitot
tube shown in Figure 14.32. By what factor must wind
speed increase to double the value of h in the manometer?
Is this independent of the moving fluid and the fluid in the
manometer?

85. If the pressure reading of your pitot tube is 15.0 mm
Hg at a speed of 200 km/h, what will it be at 700 km/h at
the same altitude?

86. Every few years, winds in Boulder, Colorado, attain
sustained speeds of 45.0 m/s (about 100 mph) when the
jet stream descends during early spring. Approximately
what is the force due to the Bernoulli equation on a roof

having an area of 220m2 ? Typical air density in Boulder is

1.14kg/m3 , and the corresponding atmospheric pressure

is 8.89 × 104 N/m2 . (Bernoulli’s principle as stated in the

text assumes laminar flow. Using the principle here
produces only an approximate result, because there is
significant turbulence.)

87. What is the pressure drop due to the Bernoulli Effect
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as water goes into a 3.00-cm-diameter nozzle from a
9.00-cm-diameter fire hose while carrying a flow of 40.0 L/
s? (b) To what maximum height above the nozzle can this
water rise? (The actual height will be significantly smaller
due to air resistance.)

88. (a) Using Bernoulli’s equation, show that the
measured fluid speed v for a pitot tube, like the one in

Figure 14.32(b), is given by v = ⎛
⎝
2ρ′ gh

ρ
⎞
⎠

1/2
, where h is

the height of the manometer fluid, ρ′ is the density of the

manometer fluid, ρ is the density of the moving fluid, and

g is the acceleration due to gravity. (Note that v is indeed
proportional to the square root of h, as stated in the text.)
(b) Calculate v for moving air if a mercury manometer’s h
is 0.200 m.

89. A container of water has a cross-sectional area of

A = 0.1 m2 . A piston sits on top of the water (see the

following figure). There is a spout located 0.15 m from the
bottom of the tank, open to the atmosphere, and a stream
of water exits the spout. The cross sectional area of the

spout is As = 7.0 × 10−4 m2 . (a) What is the velocity of

the water as it leaves the spout? (b) If the opening of the
spout is located 1.5 m above the ground, how far from the
spout does the water hit the floor? Ignore all friction and
dissipative forces.

90. A fluid of a constant density flows through a reduction
in a pipe. Find an equation for the change in pressure, in
terms of v1, A1, A2 , and the density.

14.7 Viscosity and Turbulence

91. (a) Calculate the retarding force due to the viscosity of
the air layer between a cart and a level air track given the
following information: air temperature is 20 °C , the cart is

moving at 0.400 m/s, its surface area is 2.50 × 10−2 m2,

and the thickness of the air layer is 6.00 × 10−5 m . (b)

What is the ratio of this force to the weight of the 0.300-kg
cart?

92. The arterioles (small arteries) leading to an organ
constrict in order to decrease flow to the organ. To shut
down an organ, blood flow is reduced naturally to 1.00%
of its original value. By what factor do the radii of the
arterioles constrict?

93. A spherical particle falling at a terminal speed in a
liquid must have the gravitational force balanced by the
drag force and the buoyant force. The buoyant force is
equal to the weight of the displaced fluid, while the drag
force is assumed to be given by Stokes Law, Fs = 6πrηv.
Show that the terminal speed is given by

v = 2R2 g
9η (ρs − ρ1) , where R is the radius of the sphere,

ρs is its density, and ρ1 is the density of the fluid, and η
the coefficient of viscosity.

94. Using the equation of the previous problem, find the
viscosity of motor oil in which a steel ball of radius 0.8 mm
falls with a terminal speed of 4.32 cm/s. The densities of
the ball and the oil are 7.86 and 0.88 g/mL, respectively.

95. A skydiver will reach a terminal velocity when the
air drag equals his or her weight. For a skydiver with a
large body, turbulence is a factor at high speeds. The drag
force then is approximately proportional to the square of

the velocity. Taking the drag force to be FD = 1
2ρAv2,

and setting this equal to the skydiver’s weight, find the
terminal speed for a person falling “spread eagle.”

96. (a) Verify that a 19.0% decrease in laminar flow
through a tube is caused by a 5.00% decrease in radius,
assuming that all other factors remain constant. (b) What
increase in flow is obtained from a 5.00% increase in
radius, again assuming all other factors remain constant?

97. When physicians diagnose arterial blockages, they
quote the reduction in flow rate. If the flow rate in an artery
has been reduced to 10.0% of its normal value by a blood
clot and the average pressure difference has increased by
20.0%, by what factor has the clot reduced the radius of the
artery?
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98. An oil gusher shoots crude oil 25.0 m into the air
through a pipe with a 0.100-m diameter. Neglecting air
resistance but not the resistance of the pipe, and assuming
laminar flow, calculate the pressure at the entrance of the
50.0-m-long vertical pipe. Take the density of the oil to

be 900 kg/m3 and its viscosity to be 1.00(N/m2) ⋅ s (or

1.00 Pa ⋅ s ). Note that you must take into account the

pressure due to the 50.0-m column of oil in the pipe.

99. Concrete is pumped from a cement mixer to the place
it is being laid, instead of being carried in wheelbarrows.
The flow rate is 200 L/min through a 50.0-m-long,
8.00-cm-diameter hose, and the pressure at the pump is

8.00 × 106 N/m2 . (a) Calculate the resistance of the hose.

(b) What is the viscosity of the concrete, assuming the
flow is laminar? (c) How much power is being supplied,
assuming the point of use is at the same level as the pump?
You may neglect the power supplied to increase the
concrete’s velocity.

100. Verify that the flow of oil is laminar for an oil gusher
that shoots crude oil 25.0 m into the air through a pipe with

a 0.100-m diameter. The vertical pipe is 50 m long. Take

the density of the oil to be 900 kg/m3 and its viscosity to

be 1.00(N/m2) ⋅ s (or 1.00 Pa ⋅ s ).

101. Calculate the Reynolds numbers for the flow of water
through (a) a nozzle with a radius of 0.250 cm and (b) a
garden hose with a radius of 0.900 cm, when the nozzle is
attached to the hose. The flow rate through hose and nozzle
is 0.500 L/s. Can the flow in either possibly be laminar?

102. A fire hose has an inside diameter of 6.40 cm.
Suppose such a hose carries a flow of 40.0 L/s starting at a

gauge pressure of 1.62 × 106 N/m2 . The hose goes 10.0

m up a ladder to a nozzle having an inside diameter of
3.00 cm. Calculate the Reynolds numbers for flow in the
fire hose and nozzle to show that the flow in each must be
turbulent.

103. At what flow rate might turbulence begin to develop
in a water main with a 0.200-m diameter? Assume a 20 °C
temperature.

ADDITIONAL PROBLEMS

104. Before digital storage devices, such as the memory
in your cell phone, music was stored on vinyl disks with
grooves with varying depths cut into the disk. A
phonograph used a needle, which moved over the grooves,
measuring the depth of the grooves. The pressure exerted
by a phonograph needle on a record is surprisingly large. If
the equivalent of 1.00 g is supported by a needle, the tip of
which is a circle with a 0.200-mm radius, what pressure is
exerted on the record in Pa?

105. Water towers store water above the level of
consumers for times of heavy use, eliminating the need for
high-speed pumps. How high above a user must the water

level be to create a gauge pressure of 3.00 × 105 N/m2 ?

106. The aqueous humor in a person’s eye is exerting a

force of 0.300 N on the 1.10-cm2 area of the cornea. What

pressure is this in mm Hg?

107. (a) Convert normal blood pressure readings of 120
over 80 mm Hg to newtons per meter squared using the
relationship for pressure due to the weight of a fluid
(p = hρg) rather than a conversion factor. (b) Explain

why the blood pressure of an infant would likely be smaller
than that of an adult. Specifically, consider the smaller
height to which blood must be pumped.

108. Pressure cookers have been around for more than

300 years, although their use has greatly declined in recent
years (early models had a nasty habit of exploding). How
much force must the latches holding the lid onto a pressure
cooker be able to withstand if the circular lid is 25.0 cm in

diameter and the gauge pressure inside is 300 atm? Neglect
the weight of the lid.

109. Bird bones have air pockets in them to reduce their
weight—this also gives them an average density
significantly less than that of the bones of other animals.
Suppose an ornithologist weighs a bird bone in air and in
water and finds its mass is 45.0 g and its apparent mass
when submerged is 3.60 g (assume the bone is watertight).
(a) What mass of water is displaced? (b) What is the
volume of the bone? (c) What is its average density?

110. In an immersion measurement of a woman’s density,
she is found to have a mass of 62.0 kg in air and an apparent
mass of 0.0850 kg when completely submerged with lungs
empty. (a) What mass of water does she displace? (b) What
is her volume? (c) Calculate her density. (d) If her lung
capacity is 1.75 L, is she able to float without treading
water with her lungs filled with air?

111. Some fish have a density slightly less than that of
water and must exert a force (swim) to stay submerged.
What force must an 85.0-kg grouper exert to stay
submerged in salt water if its body density is

1015 kg/m3?

746 Chapter 14 | Fluid Mechanics

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



112. The human circulation system has approximately

1 × 109 capillary vessels. Each vessel has a diameter of

about 8µm . Assuming cardiac output is 5 L/min,

determine the average velocity of blood flow through each
capillary vessel.

113. The flow rate of blood through a 2.00 × 10−6 m
-radius capillary is 3.80 × 109 cm3 /s . (a) What is the

speed of the blood flow? (b) Assuming all the blood in the
body passes through capillaries, how many of them must

there be to carry a total flow of 90.0 cm3 /s ?

114. The left ventricle of a resting adult’s heart pumps

blood at a flow rate of 83.0 cm3 /s , increasing its pressure

by 110 mm Hg, its speed from zero to 30.0 cm/s, and its
height by 5.00 cm. (All numbers are averaged over the
entire heartbeat.) Calculate the total power output of the left
ventricle. Note that most of the power is used to increase
blood pressure.

115. A sump pump (used to drain water from the basement
of houses built below the water table) is draining a flooded
basement at the rate of 0.750 L/s, with an output pressure

of 3.00 × 105 N/m2 . (a) The water enters a hose with a

3.00-cm inside diameter and rises 2.50 m above the pump.
What is its pressure at this point? (b) The hose goes over

the foundation wall, losing 0.500 m in height, and widens
to 4.00 cm in diameter. What is the pressure now? You may
neglect frictional losses in both parts of the problem.

116. A glucose solution being administered with an IV has

a flow rate of 4.00 cm3 /min . What will the new flow rate

be if the glucose is replaced by whole blood having the
same density but a viscosity 2.50 times that of the glucose?
All other factors remain constant.

117. A small artery has a length of 1.1 × 10−3 m and

a radius of 2.5 × 10−5 m . If the pressure drop across the

artery is 1.3 kPa, what is the flow rate through the artery?
(Assume that the temperature is 37 °C .)

118. Angioplasty is a technique in which arteries partially
blocked with plaque are dilated to increase blood flow. By
what factor must the radius of an artery be increased in
order to increase blood flow by a factor of 10?

119. Suppose a blood vessel’s radius is decreased to
90.0% of its original value by plaque deposits and the body
compensates by increasing the pressure difference along
the vessel to keep the flow rate constant. By what factor
must the pressure difference increase? (b) If turbulence is
created by the obstruction, what additional effect would it
have on the flow rate?

CHALLENGE PROBLEMS

120. The pressure on the dam shown early in the problems
section increases with depth. Therefore, there is a net
torque on the dam. Find the net torque.

121. The temperature of the atmosphere is not always
constant and can increase or decrease with height. In a
neutral atmosphere, where there is not a significant amount
of vertical mixing, the temperature decreases at a rate of
approximately 6.5 K per km. The magnitude of the
decrease in temperature as height increases is known as
the lapse rate (Γ). (The symbol is the upper case Greek

letter gamma.) Assume that the surface pressure is

p0 = 1.013 × 105 Pa where T = 293 K and the lapse

rate is ⎛
⎝−Γ = 6.5 K

km
⎞
⎠ . Estimate the pressure 3.0 km above

the surface of Earth.

122. A submarine is stranded on the bottom of the ocean
with its hatch 25.0 m below the surface. Calculate the force
needed to open the hatch from the inside, given it is circular
and 0.450 m in diameter. Air pressure inside the submarine
is 1.00 atm.

123. Logs sometimes float vertically in a lake because one
end has become water-logged and denser than the other.
What is the average density of a uniform-diameter log that
floats with 20.0% of its length above water?

124. Scurrilous con artists have been known to represent
gold-plated tungsten ingots as pure gold and sell them at
prices much below gold value but high above the cost of
tungsten. With what accuracy must you be able to measure
the mass of such an ingot in and out of water to tell that it
is almost pure tungsten rather than pure gold?

125. The inside volume of a house is equivalent to that of
a rectangular solid 13.0 m wide by 20.0 m long by 2.75 m
high. The house is heated by a forced air gas heater. The
main uptake air duct of the heater is 0.300 m in diameter.
What is the average speed of air in the duct if it carries
a volume equal to that of the house’s interior every 15
minutes?

126. A garden hose with a diameter of 2.0 cm is used to
fill a bucket, which has a volume of 0.10 cubic meters. It
takes 1.2 minutes to fill. An adjustable nozzle is attached
to the hose to decrease the diameter of the opening, which
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increases the speed of the water. The hose is held level to
the ground at a height of 1.0 meters and the diameter is
decreased until a flower bed 3.0 meters away is reached.
(a) What is the volume flow rate of the water through the
nozzle when the diameter is 2.0 cm? (b) What is the speed
of the water coming out of the hose? (c) What does the
speed of the water coming out of the hose need to be to
reach the flower bed 3.0 meters away? (d) What is the
diameter of the nozzle needed to reach the flower bed?

127. A frequently quoted rule of thumb in aircraft design
is that wings should produce about 1000 N of lift per square
meter of wing. (The fact that a wing has a top and bottom
surface does not double its area.) (a) At takeoff, an aircraft
travels at 60.0 m/s, so that the air speed relative to the
bottom of the wing is 60.0 m/s. Given the sea level density

of air as 1.29 kg/m3 , how fast must it move over the

upper surface to create the ideal lift? (b) How fast must
air move over the upper surface at a cruising speed of
245 m/s and at an altitude where air density is one-fourth
that at sea level? (Note that this is not all of the aircraft’s
lift—some comes from the body of the plane, some from
engine thrust, and so on. Furthermore, Bernoulli’s principle
gives an approximate answer because flow over the wing
creates turbulence.)

128. Two pipes of equal and constant diameter leave a
water pumping station and dump water out of an open end
that is open to the atmosphere (see the following figure).
The water enters at a pressure of two atmospheres and a
speed of ⎛

⎝v1 = 1.0 m/s⎞
⎠ . One pipe drops a height of 10 m.

What is the velocity of the water as the water leaves each
pipe?

129. Fluid originally flows through a tube at a rate of

100 cm3 /s . To illustrate the sensitivity of flow rate to

various factors, calculate the new flow rate for the
following changes with all other factors remaining the same
as in the original conditions. (a) Pressure difference
increases by a factor of 1.50. (b) A new fluid with 3.00
times greater viscosity is substituted. (c) The tube is
replaced by one having 4.00 times the length. (d) Another
tube is used with a radius 0.100 times the original. (e) Yet
another tube is substituted with a radius 0.100 times the
original and half the length, and the pressure difference is
increased by a factor of 1.50.

130. During a marathon race, a runner’s blood flow
increases to 10.0 times her resting rate. Her blood’s
viscosity has dropped to 95.0% of its normal value, and the
blood pressure difference across the circulatory system has
increased by 50.0%. By what factor has the average radii of
her blood vessels increased?

131. Water supplied to a house by a water main has a

pressure of 3.00 × 105 N/m2 early on a summer day

when neighborhood use is low. This pressure produces a
flow of 20.0 L/min through a garden hose. Later in the day,
pressure at the exit of the water main and entrance to the
house drops, and a flow of only 8.00 L/min is obtained
through the same hose. (a) What pressure is now being
supplied to the house, assuming resistance is constant? (b)
By what factor did the flow rate in the water main increase
in order to cause this decrease in delivered pressure? The
pressure at the entrance of the water main is

5.00 × 105 N/m2 , and the original flow rate was 200 L/

min. (c) How many more users are there, assuming each
would consume 20.0 L/min in the morning?

132. Gasoline is piped underground from refineries to

major users. The flow rate is 3.00 × 10−2 m3 /s (about

500 gal/min), the viscosity of gasoline is

1.00 × 10−3 (N/m2) ⋅ s , and its density is 680 kg/m3.
(a) What minimum diameter must the pipe have if the
Reynolds number is to be less than 2000? (b) What pressure
difference must be maintained along each kilometer of the
pipe to maintain this flow rate?
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