
17 | SOUND

Figure 17.1 Hearing is an important human sense that can detect frequencies of sound, ranging between 20 Hz and 20 kHz.
However, other species have very different ranges of hearing. Bats, for example, emit clicks in ultrasound, using frequencies
beyond 20 kHz. They can detect nearby insects by hearing the echo of these ultrasonic clicks. Ultrasound is important in several
human applications, including probing the interior structures of human bodies, Earth, and the Sun. Ultrasound is also useful in
industry for nondestructive testing. (credit: modification of work by Angell Williams)
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Introduction
Sound is an example of a mechanical wave, specifically, a pressure wave: Sound waves travel through the air and other
media as oscillations of molecules. Normal human hearing encompasses an impressive range of frequencies from 20 Hz to
20 kHz. Sounds below 20 Hz are called infrasound, whereas those above 20 kHz are called ultrasound. Some animals, like
the bat shown in Figure 17.1, can hear sounds in the ultrasonic range.

Many of the concepts covered in Waves also have applications in the study of sound. For example, when a sound wave
encounters an interface between two media with different wave speeds, reflection and transmission of the wave occur.

Ultrasound has many uses in science, engineering, and medicine. Ultrasound is used for nondestructive testing in
engineering, such as testing the thickness of coating on metal. In medicine, sound waves are far less destructive than X-rays
and can be used to image the fetus in a mother’s womb without danger to the fetus or the mother. Later in this chapter, we
discuss the Doppler effect, which can be used to determine the velocity of blood in the arteries or wind speed in weather
systems.
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17.1 | Sound Waves

Learning Objectives

By the end of this section, you will be able to:

• Explain the difference between sound and hearing

• Describe sound as a wave

• List the equations used to model sound waves

• Describe compression and rarefactions as they relate to sound

The physical phenomenon of sound is a disturbance of matter that is transmitted from its source outward. Hearing is the
perception of sound, just as seeing is the perception of visible light. On the atomic scale, sound is a disturbance of atoms
that is far more ordered than their thermal motions. In many instances, sound is a periodic wave, and the atoms undergo
simple harmonic motion. Thus, sound waves can induce oscillations and resonance effects (Figure 17.2).

Figure 17.2 This glass has been shattered by a high-intensity sound wave of the same
frequency as the resonant frequency of the glass. (credit: “||read||”/Flickr)

This video (https://openstaxcollege.org/l/21waveswineglas) shows waves on the surface of a wine glass,
being driven by sound waves from a speaker. As the frequency of the sound wave approaches the resonant
frequency of the wine glass, the amplitude and frequency of the waves on the wine glass increase. When the
resonant frequency is reached, the glass shatters.

A speaker produces a sound wave by oscillating a cone, causing vibrations of air molecules. In Figure 17.3, a speaker
vibrates at a constant frequency and amplitude, producing vibrations in the surrounding air molecules. As the speaker
oscillates back and forth, it transfers energy to the air, mostly as thermal energy. But a small part of the speaker’s
energy goes into compressing and expanding the surrounding air, creating slightly higher and lower local pressures. These
compressions (high-pressure regions) and rarefactions (low-pressure regions) move out as longitudinal pressure waves
having the same frequency as the speaker—they are the disturbance that is a sound wave. (Sound waves in air and most
fluids are longitudinal, because fluids have almost no shear strength. In solids, sound waves can be both transverse and
longitudinal.)
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Figure 17.3(a) shows the compressions and rarefactions, and also shows a graph of gauge pressure versus distance from
a speaker. As the speaker moves in the positive x-direction, it pushes air molecules, displacing them from their equilibrium
positions. As the speaker moves in the negative x-direction, the air molecules move back toward their equilibrium positions
due to a restoring force. The air molecules oscillate in simple harmonic motion about their equilibrium positions, as shown
in part (b). Note that sound waves in air are longitudinal, and in the figure, the wave propagates in the positive x-direction
and the molecules oscillate parallel to the direction in which the wave propagates.

Figure 17.3 (a) A vibrating cone of a speaker, moving in the positive x-direction, compresses the air in front of it and
expands the air behind it. As the speaker oscillates, it creates another compression and rarefaction as those on the right move
away from the speaker. After many vibrations, a series of compressions and rarefactions moves out from the speaker as a
sound wave. The red graph shows the gauge pressure of the air versus the distance from the speaker. Pressures vary only
slightly from atmospheric pressure for ordinary sounds. Note that gauge pressure is modeled with a sine function, where the
crests of the function line up with the compressions and the troughs line up with the rarefactions. (b) Sound waves can also be
modeled using the displacement of the air molecules. The blue graph shows the displacement of the air molecules versus the
position from the speaker and is modeled with a cosine function. Notice that the displacement is zero for the molecules in
their equilibrium position and are centered at the compressions and rarefactions. Compressions are formed when molecules on
either side of the equilibrium molecules are displaced toward the equilibrium position. Rarefactions are formed when the
molecules are displaced away from the equilibrium position.

Models Describing Sound

Sound can be modeled as a pressure wave by considering the change in pressure from average pressure,

(17.1)ΔP = ΔPmax sin⎛
⎝kx ∓ ωt + ϕ⎞

⎠.

This equation is similar to the periodic wave equations seen in Waves, where ΔP is the change in pressure, ΔPmax

is the maximum change in pressure, k = 2π
λ is the wave number, ω = 2π

T = 2π f is the angular frequency, and ϕ is

the initial phase. The wave speed can be determined from v = ω
k = λ

T . Sound waves can also be modeled in terms of

the displacement of the air molecules. The displacement of the air molecules can be modeled using a cosine function:

(17.2)s(x, t) = smax cos⎛
⎝kx ∓ ωt + ϕ⎞

⎠.

In this equation, s is the displacement and smax is the maximum displacement.

Not shown in the figure is the amplitude of a sound wave as it decreases with distance from its source, because the energy
of the wave is spread over a larger and larger area. The intensity decreases as it moves away from the speaker, as discussed
in Waves. The energy is also absorbed by objects and converted into thermal energy by the viscosity of the air. In addition,
during each compression, a little heat transfers to the air; during each rarefaction, even less heat transfers from the air,
and these heat transfers reduce the organized disturbance into random thermal motions. Whether the heat transfer from
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compression to rarefaction is significant depends on how far apart they are—that is, it depends on wavelength. Wavelength,
frequency, amplitude, and speed of propagation are important characteristics for sound, as they are for all waves.

17.2 | Speed of Sound

Learning Objectives

By the end of this section, you will be able to:

• Explain the relationship between wavelength and frequency of sound

• Determine the speed of sound in different media

• Derive the equation for the speed of sound in air

• Determine the speed of sound in air for a given temperature

Sound, like all waves, travels at a certain speed and has the properties of frequency and wavelength. You can observe direct
evidence of the speed of sound while watching a fireworks display (Figure 17.4). You see the flash of an explosion well
before you hear its sound and possibly feel the pressure wave, implying both that sound travels at a finite speed and that it
is much slower than light.

Figure 17.4 When a firework shell explodes, we perceive the light energy before the sound
energy because sound travels more slowly than light does.

The difference between the speed of light and the speed of sound can also be experienced during an electrical storm. The
flash of lighting is often seen before the clap of thunder. You may have heard that if you count the number of seconds
between the flash and the sound, you can estimate the distance to the source. Every five seconds converts to about one mile.
The velocity of any wave is related to its frequency and wavelength by

(17.3)v = f λ,

where v is the speed of the wave, f is its frequency, and λ is its wavelength. Recall from Waves that the wavelength is the

length of the wave as measured between sequential identical points. For example, for a surface water wave or sinusoidal
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wave on a string, the wavelength can be measured between any two convenient sequential points with the same height and
slope, such as between two sequential crests or two sequential troughs. Similarly, the wavelength of a sound wave is the
distance between sequential identical parts of a wave—for example, between sequential compressions (Figure 17.5). The
frequency is the same as that of the source and is the number of waves that pass a point per unit time.

Figure 17.5 A sound wave emanates from a source, such as a tuning fork, vibrating at a frequency f. It propagates at
speed v and has a wavelength λ .

Speed of Sound in Various Media
Table 17.1 shows that the speed of sound varies greatly in different media. The speed of sound in a medium depends on
how quickly vibrational energy can be transferred through the medium. For this reason, the derivation of the speed of sound
in a medium depends on the medium and on the state of the medium. In general, the equation for the speed of a mechanical
wave in a medium depends on the square root of the restoring force, or the elastic property, divided by the inertial property,

v = elastic property
inertial property.

Also, sound waves satisfy the wave equation derived in Waves,

∂2 y(x, t)
∂ x2 = 1

v2
∂2 y(x, t)

∂ t2 .

Recall from Waves that the speed of a wave on a string is equal to v = FT
µ , where the restoring force is the tension in

the string FT and the linear density µ is the inertial property. In a fluid, the speed of sound depends on the bulk modulus

and the density,

(17.4)
v = β

ρ.

The speed of sound in a solid the depends on the Young’s modulus of the medium and the density,

(17.5)v = Y
ρ .
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In an ideal gas (see The Kinetic Theory of Gases (http://cnx.org/content/m58390/latest/) ), the equation for the
speed of sound is

(17.6)
v = γRTK

M ,

where γ is the adiabatic index, R = 8.31 J/mol · K is the gas constant, TK is the absolute temperature in kelvins, and

M is the molecular mass. In general, the more rigid (or less compressible) the medium, the faster the speed of sound. This
observation is analogous to the fact that the frequency of simple harmonic motion is directly proportional to the stiffness of
the oscillating object as measured by k, the spring constant. The greater the density of a medium, the slower the speed of
sound. This observation is analogous to the fact that the frequency of a simple harmonic motion is inversely proportional to
m, the mass of the oscillating object. The speed of sound in air is low, because air is easily compressible. Because liquids
and solids are relatively rigid and very difficult to compress, the speed of sound in such media is generally greater than in
gases.

Medium v (m/s)

Gases at 0°C

Air 331

Carbon dioxide 259

Oxygen 316

Helium 965

Hydrogen 1290

Liquids at 20°C

Ethanol 1160

Mercury 1450

Water, fresh 1480

Sea Water 1540

Human tissue 1540

Solids (longitudinal or bulk)

Vulcanized rubber 54

Polyethylene 920

Marble 3810

Glass, Pyrex 5640

Lead 1960

Aluminum 5120

Steel 5960

Table 17.1 Speed of Sound in
Various Media

Because the speed of sound depends on the density of the material, and the density depends on the temperature, there is
a relationship between the temperature in a given medium and the speed of sound in the medium. For air at sea level, the
speed of sound is given by
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(17.7)
v = 331m

s 1 + TC
273°C = 331m

s
TK

273 K

where the temperature in the first equation (denoted as TC ) is in degrees Celsius and the temperature in the second

equation (denoted as TK ) is in kelvins. The speed of sound in gases is related to the average speed of particles in the gas,

vrms = 3kB T
m , where kB is the Boltzmann constant (1.38 × 10−23 J/K) and m is the mass of each (identical) particle

in the gas. Note that v refers to the speed of the coherent propagation of a disturbance (the wave), whereas vrms describes

the speeds of particles in random directions. Thus, it is reasonable that the speed of sound in air and other gases should
depend on the square root of temperature. While not negligible, this is not a strong dependence. At 0°C , the speed of sound

is 331 m/s, whereas at 20.0°C , it is 343 m/s, less than a 4% increase. Figure 17.6 shows how a bat uses the speed of

sound to sense distances.

Figure 17.6 A bat uses sound echoes to find its way about and to catch prey. The time for the
echo to return is directly proportional to the distance.

Derivation of the Speed of Sound in Air
As stated earlier, the speed of sound in a medium depends on the medium and the state of the medium. The derivation of the
equation for the speed of sound in air starts with the mass flow rate and continuity equation discussed in Fluid Mechanics.

Consider fluid flow through a pipe with cross-sectional area A (Figure 17.7). The mass in a small volume of length x of
the pipe is equal to the density times the volume, or m = ρV = ρAx. The mass flow rate is

dm
dt = d

dt
⎛
⎝ρV ⎞

⎠ = d
dt

⎛
⎝ρAx⎞

⎠ = ρAdx
dt = ρAv.

The continuity equation from Fluid Mechanics states that the mass flow rate into a volume has to equal the mass flow
rate out of the volume, ρin Ain vin = ρout Aout vout.
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Figure 17.7 The mass of a fluid in a volume is equal to the
density times the volume, m = ρV = ρAx. The mass flow rate

is the time derivative of the mass.

Now consider a sound wave moving through a parcel of air. A parcel of air is a small volume of air with imaginary
boundaries (Figure 17.8). The density, temperature, and velocity on one side of the volume of the fluid are given as
ρ, T , v, and on the other side are ρ + dρ, T + dT , v + dv.

Figure 17.8 A sound wave moves through a volume of fluid.
The density, temperature, and velocity of the fluid change from
one side to the other.

The continuity equation states that the mass flow rate entering the volume is equal to the mass flow rate leaving the volume,
so

ρAv = ⎛
⎝ρ + dρ⎞

⎠A(v + dv).

This equation can be simplified, noting that the area cancels and considering that the multiplication of two infinitesimals is
approximately equal to zero: dρ(dv) ≈ 0,

ρv = ⎛
⎝ρ + dρ⎞

⎠(v + dv)
ρv = ρv + ρ(dv) + ⎛

⎝dρ⎞
⎠v + ⎛

⎝dρ⎞
⎠(dv)

0 = ρ(dv) + ⎛
⎝dρ⎞

⎠v
ρ dv = −vdρ.

The net force on the volume of fluid (Figure 17.9) equals the sum of the forces on the left face and the right face:

Fnet = p dy dz − ⎛
⎝p + dp⎞

⎠dy dz
= p dy dz − pdy dz − dp dy dz
= −dp dy dz

ma = −dp dy dz.
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Figure 17.9 A sound wave moves through a volume of fluid.
The force on each face can be found by the pressure times the
area.

The acceleration is the force divided by the mass and the mass is equal to the density times the volume,
m = ρV = ρ dx dy dz. We have

ma = −dp dy dz

a = −dp dy dz
m = − dp dy dz

ρ dx dy dz = − dp
⎛
⎝ρ dx⎞

⎠

dv
dt = − dp

⎛
⎝ρ dx⎞

⎠

dv = − dp
⎛
⎝ρ dx⎞

⎠
dt = − dp

ρ
1
v

ρv dv = −dp.

From the continuity equation ρ dv = −vdρ , we obtain

ρvdv = −dp
⎛
⎝−vdρ⎞

⎠v = −dp

v = dp
dρ .

Consider a sound wave moving through air. During the process of compression and expansion of the gas, no heat is added or
removed from the system. A process where heat is not added or removed from the system is known as an adiabatic system.
Adiabatic processes are covered in detail in The First Law of Thermodynamics (http://cnx.org/content/m58721/
latest/) , but for now it is sufficient to say that for an adiabatic process, pV γ = constant, where p is the pressure, V is the

volume, and gamma (γ) is a constant that depends on the gas. For air, γ = 1.40 . The density equals the number of moles

times the molar mass divided by the volume, so the volume is equal to V = nM
ρ . The number of moles and the molar mass

are constant and can be absorbed into the constant p⎛
⎝
1
ρ

⎞
⎠
γ

= constant. Taking the natural logarithm of both sides yields

ln p − γ ln ρ = constant. Differentiating with respect to the density, the equation becomes

ln p − γ ln ρ = constant
d

dρ
⎛
⎝ln p − γ ln ρ⎞

⎠ = d
dρ(constant)

1
p

dp
dρ − γ

ρ = 0

dp
dρ = γp

ρ .

If the air can be considered an ideal gas, we can use the ideal gas law:

pV = nRT = m
MRT

p = m
V

RT
M = ρRT

M .
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Here M is the molar mass of air:

dp
dρ = γp

ρ =
γ⎛

⎝ρRT
M

⎞
⎠

ρ = γRT
M .

Since the speed of sound is equal to v = dp
dρ , the speed is equal to

v = γ RT
M .

Note that the velocity is faster at higher temperatures and slower for heavier gases. For air, γ = 1.4, M = 0.02897 kg
mol,

and R = 8.31 J
mol · K. If the temperature is TC = 20°C(T = 293 K), the speed of sound is v = 343 m/s.

The equation for the speed of sound in air v = γRT
M can be simplified to give the equation for the speed of sound in air as

a function of absolute temperature:

v = γRT
M

= γRT
M

⎛
⎝
273 K
273 K

⎞
⎠ = (273 K)γR

M
T

273 K

≈ 331m
s

T
273 K.

One of the more important properties of sound is that its speed is nearly independent of the frequency. This independence
is certainly true in open air for sounds in the audible range. If this independence were not true, you would certainly notice
it for music played by a marching band in a football stadium, for example. Suppose that high-frequency sounds traveled
faster—then the farther you were from the band, the more the sound from the low-pitch instruments would lag that from
the high-pitch ones. But the music from all instruments arrives in cadence independent of distance, so all frequencies must
travel at nearly the same speed. Recall that

v = f λ.

In a given medium under fixed conditions, v is constant, so there is a relationship between f and λ; the higher the frequency,

the smaller the wavelength (Figure 17.10).
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Figure 17.10 Because they travel at the same speed in a given
medium, low-frequency sounds must have a greater wavelength than
high-frequency sounds. Here, the lower-frequency sounds are
emitted by the large speaker, called a woofer, whereas the higher-
frequency sounds are emitted by the small speaker, called a tweeter.

Example 17.1

Calculating Wavelengths

Calculate the wavelengths of sounds at the extremes of the audible range, 20 and 20,000 Hz, in 30.0°C air.

(Assume that the frequency values are accurate to two significant figures.)

Strategy

To find wavelength from frequency, we can use v = f λ.

Solution
1. Identify knowns. The value for v is given by

v = (331 m/s) T
273 K.

2. Convert the temperature into kelvins and then enter the temperature into the equation

v = (331 m/s) 303 K
273 K = 348.7 m/s.

3. Solve the relationship between speed and wavelength for λ:

λ = v
f .

4. Enter the speed and the minimum frequency to give the maximum wavelength:

λmax = 348.7 m/s
20 Hz = 17 m.

5. Enter the speed and the maximum frequency to give the minimum wavelength:

λmin = 348.7 m/s
20,000 Hz = 0.017 m = 1.7 cm.
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17.1

Significance

Because the product of f multiplied by λ equals a constant, the smaller f is, the larger λ must be, and vice versa.

The speed of sound can change when sound travels from one medium to another, but the frequency usually remains the
same. This is similar to the frequency of a wave on a string being equal to the frequency of the force oscillating the string.
If v changes and f remains the same, then the wavelength λ must change. That is, because v = f λ , the higher the speed of

a sound, the greater its wavelength for a given frequency.

Check Your Understanding Imagine you observe two firework shells explode. You hear the explosion
of one as soon as you see it. However, you see the other shell for several milliseconds before you hear the
explosion. Explain why this is so.

Although sound waves in a fluid are longitudinal, sound waves in a solid travel both as longitudinal waves and transverse
waves. Seismic waves, which are essentially sound waves in Earth’s crust produced by earthquakes, are an interesting
example of how the speed of sound depends on the rigidity of the medium. Earthquakes produce both longitudinal and
transverse waves, and these travel at different speeds. The bulk modulus of granite is greater than its shear modulus. For
that reason, the speed of longitudinal or pressure waves (P-waves) in earthquakes in granite is significantly higher than the
speed of transverse or shear waves (S-waves). Both types of earthquake waves travel slower in less rigid material, such as
sediments. P-waves have speeds of 4 to 7 km/s, and S-waves range in speed from 2 to 5 km/s, both being faster in more rigid
material. The P-wave gets progressively farther ahead of the S-wave as they travel through Earth’s crust. The time between
the P- and S-waves is routinely used to determine the distance to their source, the epicenter of the earthquake. Because S-
waves do not pass through the liquid core, two shadow regions are produced (Figure 17.11).

Figure 17.11 Earthquakes produce both longitudinal waves (P-waves) and
transverse waves (S-waves), and these travel at different speeds. Both waves
travel at different speeds in the different regions of Earth, but in general, P-
waves travel faster than S-waves. S-waves cannot be supported by the liquid
core, producing shadow regions.

As sound waves move away from a speaker, or away from the epicenter of an earthquake, their power per unit area
decreases. This is why the sound is very loud near a speaker and becomes less loud as you move away from the speaker.
This also explains why there can be an extreme amount of damage at the epicenter of an earthquake but only tremors are
felt in areas far from the epicenter. The power per unit area is known as the intensity, and in the next section, we will discuss
how the intensity depends on the distance from the source.
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17.3 | Sound Intensity

Learning Objectives

By the end of this section, you will be able to:

• Define the term intensity

• Explain the concept of sound intensity level

• Describe how the human ear translates sound

In a quiet forest, you can sometimes hear a single leaf fall to the ground. But when a passing motorist has his stereo turned
up, you cannot even hear what the person next to you in your car is saying (Figure 17.12). We are all very familiar with the
loudness of sounds and are aware that loudness is related to how energetically the source is vibrating. High noise exposure
is hazardous to hearing, which is why it is important for people working in industrial settings to wear ear protection. The
relevant physical quantity is sound intensity, a concept that is valid for all sounds whether or not they are in the audible
range.

Figure 17.12 Noise on crowded roadways, like this one in Delhi, makes it hard to hear others
unless they shout. (credit: “Lingaraj G J”/Flickr)

In Waves, we defined intensity as the power per unit area carried by a wave. Power is the rate at which energy is transferred
by the wave. In equation form, intensity I is

(17.8)I = P
A,

where P is the power through an area A. The SI unit for I is W/m2. If we assume that the sound wave is spherical, and that

no energy is lost to thermal processes, the energy of the sound wave is spread over a larger area as distance increases, so the

intensity decreases. The area of a sphere is A = 4πr2. As the wave spreads out from r1 to r2, the energy also spreads

out over a larger area:

P1 = P2

I1 4πr1
2 = I2 4πr2

2;
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(17.9)
I2 = I1

⎛
⎝
r1
r2

⎞
⎠

2
.

The intensity decreases as the wave moves out from the source. In an inverse square relationship, such as the intensity, when
you double the distance, the intensity decreases to one quarter,

I2 = I1
⎛
⎝
r1
r2

⎞
⎠

2
= I1

⎛
⎝

r1
2r1

⎞
⎠

2
= 1

4I1.

Generally, when considering the intensity of a sound wave, we take the intensity to be the time-averaged value of the power,
denoted by 〈 P 〉 , divided by the area,

(17.10)I = 〈 P 〉
A .

The intensity of a sound wave is proportional to the change in the pressure squared and inversely proportional to the density
and the speed. Consider a parcel of a medium initially undisturbed and then influenced by a sound wave at time t, as shown
in Figure 17.13.

Figure 17.13 An undisturbed parcel of a medium with a
volume V = AΔx shown in blue. A sound wave moves

through the medium at time t, and the parcel is displaced and
expands, as shown by dotted lines. The change in volume is
ΔV = AΔs = A(s2 − s1) , where s1 is the displacement of

the leading edge of the parcel and s2 is the displacement of the

trailing edge of the parcel. In the figure, s2 > s1 and the parcel

expands, but the parcel can either expand or compress
(s2 < s1) , depending on which part of the sound wave

(compression or rarefaction) is moving through the parcel.

As the sound wave moves through the parcel, the parcel is displaced and may expand or contract. If s2 > s1 , the volume

has increased and the pressure decreases. If s2 < s1, the volume has decreased and the pressure increases. The change in

the volume is

ΔV = AΔs = A(s2 − s1) = A⎛
⎝s(x + Δx, t) − s(x, t)⎞

⎠.

The fractional change in the volume is the change in volume divided by the original volume:

dV
V = lim

Δx → 0
A⎡

⎣s(x + Δx, t) − s(x, t)⎤
⎦

AΔx = ∂s(x, t)
∂ x .

The fractional change in volume is related to the pressure fluctuation by the bulk modulus β = − Δp(x, t)
dV /V . Recall that
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the minus sign is required because the volume is inversely related to the pressure. (We use lowercase p for pressure to

distinguish it from power, denoted by P.) The change in pressure is therefore Δp(x, t) = −βdV
V = −β∂s(x, t)

∂ x . If the

sound wave is sinusoidal, then the displacement as shown in Equation 17.2 is s(x, t) = smax cos⎛
⎝kx ∓ ωt + ϕ⎞

⎠ and the

pressure is found to be

Δp(x, t) = −βdV
V = −β∂s(x, t)

∂ x = βksmax sin⎛
⎝kx − ωt + ϕ⎞

⎠ = Δpmax sin⎛
⎝kx − ωt + ϕ⎞

⎠.

The intensity of the sound wave is the power per unit area, and the power is the force times the velocity, I = P
A = Fv

A = pv.

Here, the velocity is the velocity of the oscillations of the medium, and not the velocity of the sound wave. The velocity of
the medium is the time rate of change in the displacement:

v(x, t) = ∂
∂ ys(x, t) = ∂

∂ y
⎛
⎝smax cos⎛

⎝kx − ωt + ϕ⎞
⎠
⎞
⎠ = smax ω sin⎛

⎝kx − ωt + ϕ⎞
⎠.

Thus, the intensity becomes

I = Δp(x, t)v(x, t)
= βksmax sin⎛

⎝kx − ωt + ϕ⎞
⎠
⎡
⎣smax ω sin⎛

⎝kx − ωt + ϕ⎞
⎠
⎤
⎦

= βkωsmax
2 sin2 ⎛

⎝kx − ωt + ϕ⎞
⎠.

To find the time-averaged intensity over one period T = 2π
ω for a position x, we integrate over the period, I = βkωsmax

2

2 .

Using Δpmax = βksmax, v = β
ρ, and v = ω

k , we obtain

I = βkωsmax
2

2 = β2 k2 ωsmax
2

2βk = ω⎛
⎝Δpmax

⎞
⎠
2

2⎛
⎝ρv2⎞

⎠k
= v⎛

⎝Δpmax
⎞
⎠
2

2⎛
⎝ρv2⎞

⎠
=

⎛
⎝Δpmax

⎞
⎠
2

2ρv .

That is, the intensity of a sound wave is related to its amplitude squared by

(17.11)
I = (Δpmax)2

2ρv .

Here, Δpmax is the pressure variation or pressure amplitude in units of pascals (Pa) or N/m2 . The energy (as kinetic

energy 1
2mv2 ) of an oscillating element of air due to a traveling sound wave is proportional to its amplitude squared. In

this equation, ρ is the density of the material in which the sound wave travels, in units of kg/m3, and v is the speed of

sound in the medium, in units of m/s. The pressure variation is proportional to the amplitude of the oscillation, so I varies

as ⎛
⎝Δp⎞

⎠
2. This relationship is consistent with the fact that the sound wave is produced by some vibration; the greater its

pressure amplitude, the more the air is compressed in the sound it creates.

Human Hearing and Sound Intensity Levels
As stated earlier in this chapter, hearing is the perception of sound. The hearing mechanism involves some interesting
physics. The sound wave that impinges upon our ear is a pressure wave. The ear is a transducer that converts sound waves
into electrical nerve impulses in a manner much more sophisticated than, but analogous to, a microphone. Figure 17.14
shows the anatomy of the ear.
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Figure 17.14 The anatomy of the human ear.

The outer ear, or ear canal, carries sound to the recessed, protected eardrum. The air column in the ear canal resonates and
is partially responsible for the sensitivity of the ear to sounds in the 2000–5000-Hz range. The middle ear converts sound
into mechanical vibrations and applies these vibrations to the cochlea.

Watch this video (https://openstaxcollege.org/l/21humanear) for a more detailed discussion of the
workings of the human ear.

The range of intensities that the human ear can hear depends on the frequency of the sound, but, in general, the range is

quite large. The minimum threshold intensity that can be heard is I0 = 10−12 W/m2. Pain is experienced at intensities of

Ipain = 1 W/m2. Measurements of sound intensity (in units of W/m2 ) are very cumbersome due to this large range in

values. For this reason, as well as for other reasons, the concept of sound intensity level was proposed.

The sound intensity level β of a sound, measured in decibels, having an intensity I in watts per meter squared, is defined

as

(17.12)β(dB) = 10 log10
⎛
⎝

I
I0

⎞
⎠,

where I0 = 10−12 W/m2 is a reference intensity, corresponding to the threshold intensity of sound that a person with

normal hearing can perceive at a frequency of 1.00 kHz. It is more common to consider sound intensity levels in dB than

in W/m2. How human ears perceive sound can be more accurately described by the logarithm of the intensity rather than

directly by the intensity. Because β is defined in terms of a ratio, it is a unitless quantity, telling you the level of the sound

relative to a fixed standard ( 10−12 W/m2 ). The units of decibels (dB) are used to indicate this ratio is multiplied by 10 in

its definition. The bel, upon which the decibel is based, is named for Alexander Graham Bell, the inventor of the telephone.

The decibel level of a sound having the threshold intensity of 10−12 W/m2 is β = 0 dB, because log10 1 = 0. Table

17.2 gives levels in decibels and intensities in watts per meter squared for some familiar sounds. The ear is sensitive to as
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little as a trillionth of a watt per meter squared—even more impressive when you realize that the area of the eardrum is only

about 1 cm2, so that only 10−16 W falls on it at the threshold of hearing. Air molecules in a sound wave of this intensity

vibrate over a distance of less than one molecular diameter, and the gauge pressures involved are less than 10−9 atm.

Sound intensity level β
(dB)

Intensity I
⎛
⎝W/m2⎞

⎠

Example/effect

0 1 × 10−12 Threshold of hearing at 1000 Hz

10 1 × 10−11 Rustle of leaves

20 1 × 10−10 Whisper at 1-m distance

30 1 × 10−9 Quiet home

40 1 × 10−8 Average home

50 1 × 10−7 Average office, soft music

60 1 × 10−6 Normal conversation

70 1 × 10−5 Noisy office, busy traffic

80 1 × 10−4 Loud radio, classroom lecture

90 1 × 10−3 Inside a heavy truck; damage from prolonged
exposure[1]

100 1 × 10−2 Noisy factory, siren at 30 m; damage from 8 h per day
exposure

110 1 × 10−1 Damage from 30 min per day exposure

120 1 Loud rock concert; pneumatic chipper at 2 m;
threshold of pain

140 1 × 102 Jet airplane at 30 m; severe pain, damage in seconds

160 1 × 104 Bursting of eardrums

Table 17.2 Sound Intensity Levels and Intensities [1] Several government agencies and health-related
professional associations recommend that 85 dB not be exceeded for 8-hour daily exposures in the absence of
hearing protection.

An observation readily verified by examining Table 17.2 or by using Equation 17.12 is that each factor of 10 in intensity
corresponds to 10 dB. For example, a 90-dB sound compared with a 60-dB sound is 30 dB greater, or three factors of 10

(that is, 103 times) as intense. Another example is that if one sound is 107 as intense as another, it is 70 dB higher (Table

17.3).

I2 /I1 β2 − β1

2.0 3.0 dB

Table 17.3 Ratios of
Intensities and
Corresponding
Differences in Sound
Intensity Levels
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I2 /I1 β2 − β1

5.0 7.0 dB

10.0 10.0 dB

100.0 20.0 dB

1000.0 30.0 dB

Table 17.3 Ratios of
Intensities and
Corresponding
Differences in Sound
Intensity Levels

Example 17.2

Calculating Sound Intensity Levels

Calculate the sound intensity level in decibels for a sound wave traveling in air at 0°C and having a pressure

amplitude of 0.656 Pa.

Strategy

We are given Δp , so we can calculate I using the equation I = (Δp)2

2ρvw
. Using I, we can calculate β straight

from its definition in β(dB) = 10 log10
⎛
⎝

I
I0

⎞
⎠.

Solution
1. Identify knowns:

Sound travels at 331 m/s in air at 0°C.
Air has a density of 1.29 kg/m3 at atmospheric pressure and 0°C.

2. Enter these values and the pressure amplitude into I = (Δp)2

2ρv .

I = (Δp)2

2ρv = (0.656 Pa)2

2(1.29 kg/m3)(331 m/s)
= 5.04 × 10−4 W/m2.

3. Enter the value for I and the known value for I0 into β(dB) = 10 log10(I/I0). Calculate to find the

sound intensity level in decibels:

10 log10(5.04 × 108) = 10(8.70)dB = 87 dB.

Significance

This 87-dB sound has an intensity five times as great as an 80-dB sound. So a factor of five in intensity
corresponds to a difference of 7 dB in sound intensity level. This value is true for any intensities differing by a
factor of five.

Example 17.3

Changing Intensity Levels of a Sound

Show that if one sound is twice as intense as another, it has a sound level about 3 dB higher.
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17.2

Strategy

We are given that the ratio of two intensities is 2 to 1, and are then asked to find the difference in their sound
levels in decibels. We can solve this problem by using of the properties of logarithms.

Solution
1. Identify knowns:

The ratio of the two intensities is 2 to 1, or

I2
I1

= 2.00.

We wish to show that the difference in sound levels is about 3 dB. That is, we want to show:

β2 − β1 = 3 dB.

Note that

log10 b − log10 a = log10
⎛
⎝
b
a

⎞
⎠.

2. Use the definition of β to obtain

β2 − β1 = 10 log10
⎛
⎝

I2
I1

⎞
⎠ = 10 log10 2.00 = 10(0.301) dB.

Thus,

β2 − β1 = 3.01 dB.

Significance

This means that the two sound intensity levels differ by 3.01 dB, or about 3 dB, as advertised. Note that because
only the ratio I2 /I1 is given (and not the actual intensities), this result is true for any intensities that differ by a

factor of two. For example, a 56.0-dB sound is twice as intense as a 53.0-dB sound, a 97.0-dB sound is half as
intense as a 100-dB sound, and so on.

Check Your Understanding Identify common sounds at the levels of 10 dB, 50 dB, and 100 dB.

Another decibel scale is also in use, called the sound pressure level, based on the ratio of the pressure amplitude to a
reference pressure. This scale is used particularly in applications where sound travels in water. It is beyond the scope of this
text to treat this scale because it is not commonly used for sounds in air, but it is important to note that very different decibel
levels may be encountered when sound pressure levels are quoted.

Hearing and Pitch
The human ear has a tremendous range and sensitivity. It can give us a wealth of simple information—such as pitch,
loudness, and direction.

The perception of frequency is called pitch. Typically, humans have excellent relative pitch and can discriminate between
two sounds if their frequencies differ by 0.3% or more. For example, 500.0 and 501.5 Hz are noticeably different. Musical
notes are sounds of a particular frequency that can be produced by most instruments and in Western music have particular
names, such as A-sharp, C, or E-flat.

The perception of intensity is called loudness. At a given frequency, it is possible to discern differences of about 1 dB, and
a change of 3 dB is easily noticed. But loudness is not related to intensity alone. Frequency has a major effect on how loud
a sound seems. Sounds near the high- and low-frequency extremes of the hearing range seem even less loud, because the
ear is less sensitive at those frequencies. When a violin plays middle C, there is no mistaking it for a piano playing the same
note. The reason is that each instrument produces a distinctive set of frequencies and intensities. We call our perception of
these combinations of frequencies and intensities tone quality or, more commonly, the timbre of the sound. Timbre is the
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shape of the wave that arises from the many reflections, resonances, and superposition in an instrument.

A unit called a phon is used to express loudness numerically. Phons differ from decibels because the phon is a unit of
loudness perception, whereas the decibel is a unit of physical intensity. Figure 17.15 shows the relationship of loudness
to intensity (or intensity level) and frequency for persons with normal hearing. The curved lines are equal-loudness curves.
Each curve is labeled with its loudness in phons. Any sound along a given curve is perceived as equally loud by the
average person. The curves were determined by having large numbers of people compare the loudness of sounds at different
frequencies and sound intensity levels. At a frequency of 1000 Hz, phons are taken to be numerically equal to decibels.

Figure 17.15 The relationship of loudness in phons to intensity level (in decibels) and
intensity (in watts per meter squared) for persons with normal hearing. The curved lines are
equal-loudness curves—all sounds on a given curve are perceived as equally loud. Phons and
decibels are defined to be the same at 1000 Hz.

Example 17.4

Measuring Loudness

(a) What is the loudness in phons of a 100-Hz sound that has an intensity level of 80 dB? (b) What is the intensity
level in decibels of a 4000-Hz sound having a loudness of 70 phons? (c) At what intensity level will an 8000-Hz
sound have the same loudness as a 200-Hz sound at 60 dB?

Strategy

The graph in Figure 17.15 should be referenced to solve this example. To find the loudness of a given sound,
you must know its frequency and intensity level, locate that point on the square grid, and then interpolate between
loudness curves to get the loudness in phons. Once that point is located, the intensity level can be determined
from the vertical axis.

Solution
1. Identify knowns: The square grid of the graph relating phons and decibels is a plot of intensity level

versus frequency—both physical quantities: 100 Hz at 80 dB lies halfway between the curves marked 70
and 80 phons.
Find the loudness: 75 phons.

2. Identify knowns: Values are given to be 4000 Hz at 70 phons.
Follow the 70-phon curve until it reaches 4000 Hz. At that point, it is below the 70 dB line at about 67
dB.
Find the intensity level: 67 dB.
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17.3

3. Locate the point for a 200 Hz and 60 dB sound.
Find the loudness: This point lies just slightly above the 50-phon curve, and so its loudness is 51 phons.
Look for the 51-phon level is at 8000 Hz: 63 dB.

Significance

These answers, like all information extracted from Figure 17.15, have uncertainties of several phons or several
decibels, partly due to difficulties in interpolation, but mostly related to uncertainties in the equal-loudness curves.

Check Your Understanding Describe how amplitude is related to the loudness of a sound.

In this section, we discussed the characteristics of sound and how we hear, but how are the sounds we hear produced?
Interesting sources of sound are musical instruments and the human voice, and we will discuss these sources. But before we
can understand how musical instruments produce sound, we need to look at the basic mechanisms behind these instruments.
The theories behind the mechanisms used by musical instruments involve interference, superposition, and standing waves,
which we discuss in the next section.

17.4 | Normal Modes of a Standing Sound Wave

Learning Objectives

By the end of this section, you will be able to:

• Explain the mechanism behind sound-reducing headphones

• Describe resonance in a tube closed at one end and open at the other end

• Describe resonance in a tube open at both ends

Interference is the hallmark of waves, all of which exhibit constructive and destructive interference exactly analogous to
that seen for water waves. In fact, one way to prove something “is a wave” is to observe interference effects. Since sound is
a wave, we expect it to exhibit interference.

Interference of Sound Waves
In Waves, we discussed the interference of wave functions that differ only in a phase shift. We found that the wave function
resulting from the superposition of y1 (x, t) = A sin⎛

⎝kx − ωt + ϕ⎞
⎠ and y2 (x, t) = A sin(kx − ωt) is

y(x, t) = ⎡
⎣2A cos⎛

⎝
ϕ
2

⎞
⎠
⎤
⎦sin⎛

⎝kx − ωt + ϕ
2

⎞
⎠.

One way for two identical waves that are initially in phase to become out of phase with one another is to have the waves
travel different distances; that is, they have different path lengths. Sound waves provide an excellent example of a phase
shift due to a path difference. As we have discussed, sound waves can basically be modeled as longitudinal waves, where
the molecules of the medium oscillate around an equilibrium position, or as pressure waves.

When the waves leave the speakers, they move out as spherical waves (Figure 17.16). The waves interfere; constructive
inference is produced by the combination of two crests or two troughs, as shown. Destructive interference is produced by
the combination of a trough and a crest.
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Figure 17.16 When sound waves are produced by a speaker, they travel at the
speed of sound and move out as spherical waves. Here, two speakers produce the
same steady tone (frequency). The result is points of high-intensity sound
(highlighted), which result from two crests (compression) or two troughs
(rarefaction) overlapping. Destructive interference results from a crest and trough
overlapping. The points where there is constructive interference in the figure
occur because the two waves are in phase at those points. Points of destructive
interference (Figure 17.17) are the result of the two waves being out of phase.
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Figure 17.17 Two speakers being driven by a single signal generator. The sound waves
produced by the speakers are in phase and are of a single frequency. The sound waves interfere
with each other. When two crests or two troughs coincide, there is constructive interference,
marked by the red and blue dots. When a trough and a crest coincide, destructive interference
occurs, marked by black dots. The phase difference is due to the path lengths traveled by the
individual waves. Two identical waves travel two different path lengths to a point P. (a) The
difference in the path lengths is one wavelength, resulting in total constructive interference and
a resulting amplitude equal to twice the original amplitude. (b) The difference in the path
lengths is less than one wavelength but greater than one half a wavelength, resulting in an
amplitude greater than zero and less than twice the original amplitude. (c) The difference in the
path lengths is one half of a wavelength, resulting in total destructive interference and a
resulting amplitude of zero.

The phase difference at each point is due to the different path lengths traveled by each wave. When the difference in the
path lengths is an integer multiple of a wavelength,
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Δr = |r2 − r1| = nλ, where n = 0, 1, 2, 3,…,

the waves are in phase and there is constructive interference. When the difference in path lengths is an odd multiple of a
half wavelength,

Δr = |r2 − r1| = nλ
2, where n = 1, 3, 5,…,

the waves are 180°(π rad) out of phase and the result is destructive interference. These points can be located with a sound-

level intensity meter.

Example 17.5

Interference of Sound Waves

Two speakers are separated by 5.00 m and are being driven by a signal generator at an unknown frequency. A
student with a sound-level meter walks out 6.00 m and down 2.00 m, and finds the first minimum intensity,
as shown below. What is the frequency supplied by the signal generator? Assume the wave speed of sound is
v = 343.00 m/s.

Strategy

The wave velocity is equal to v = λ
T = λ f . The frequency is then f = v

λ. A minimum intensity indicates

destructive interference and the first such point occurs where there is path difference of Δr = λ/2, which can

be found from the geometry.

Solution
1. Find the path length to the minimum point from each speaker.

r1 = (6.00 m)2 + (2.00 m)2 = 6.32 m, r2 = (6.00 m)2 + (3.00 m)2 = 6.71 m

2. Use the difference in the path length to find the wavelength.

Δr = |r2 − r1| = |6.71 m − 6.32 m| = 0.39 m

λ = 2Δr = 2(0.39 m) = 0.78 m

3. Find the frequency.
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17.4

17.5

f = v
λ = 343.00 m/s

0.78 m = 439.74 Hz

Significance

If point P were a point of maximum intensity, then the path length would be an integer multiple of the wavelength.

Check Your Understanding If you walk around two speakers playing music, how come you do not
notice places where the music is very loud or very soft, that is, where there is constructive and destructive
interference?

The concept of a phase shift due to a difference in path length is very important. You will use this concept again
in Interference (http://cnx.org/content/m58536/latest/) and Photons and Matter Waves (http://cnx.org/
content/m58757/latest/) , where we discuss how Thomas Young used this method in his famous double-slit experiment
to provide evidence that light has wavelike properties.

Noise Reduction through Destructive Interference
Figure 17.18 shows a clever use of sound interference to cancel noise. Larger-scale applications of active noise reduction
by destructive interference have been proposed for entire passenger compartments in commercial aircraft. To obtain
destructive interference, a fast electronic analysis is performed, and a second sound is introduced 180° out of phase with

the original sound, with its maxima and minima exactly reversed from the incoming noise. Sound waves in fluids are
pressure waves and are consistent with Pascal’s principle; that is, pressures from two different sources add and subtract
like simple numbers. Therefore, positive and negative gauge pressures add to a much smaller pressure, producing a lower-
intensity sound. Although completely destructive interference is possible only under the simplest conditions, it is possible
to reduce noise levels by 30 dB or more using this technique.

Figure 17.18 Headphones designed to cancel noise with
destructive interference create a sound wave exactly opposite to
the incoming sound. These headphones can be more effective
than the simple passive attenuation used in most ear protection.
Such headphones were used on the record-setting, around-the-
world nonstop flight of the Voyager aircraft in 1986 to protect
the pilots’ hearing from engine noise.

Check Your Understanding Describe how noise-canceling headphones differ from standard
headphones used to block outside sounds.

Where else can we observe sound interference? All sound resonances, such as in musical instruments, are due to
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constructive and destructive interference. Only the resonant frequencies interfere constructively to form standing waves,
whereas others interfere destructively and are absent.

Resonance in a Tube Closed at one End
As we discussed in Waves, standing waves are formed by two waves moving in opposite directions. When two identical
sinusoidal waves move in opposite directions, the waves may be modeled as

y1 (x, t) = A sin(kx − ωt) and y2 (x, t) = A sin(kx + ωt).

When these two waves interfere, the resultant wave is a standing wave:

yR (x, t) = ⎡
⎣2A sin(kx)⎤

⎦cos(ωt).

Resonance can be produced due to the boundary conditions imposed on a wave. In Waves, we showed that resonance
could be produced in a string under tension that had symmetrical boundary conditions, specifically, a node at each end. We
defined a node as a fixed point where the string did not move. We found that the symmetrical boundary conditions resulted
in some frequencies resonating and producing standing waves, while other frequencies interfere destructively. Sound waves
can resonate in a hollow tube, and the frequencies of the sound waves that resonate depend on the boundary conditions.

Suppose we have a tube that is closed at one end and open at the other. If we hold a vibrating tuning fork near the open
end of the tube, an incident sound wave travels through the tube and reflects off the closed end. The reflected sound has the
same frequency and wavelength as the incident sound wave, but is traveling in the opposite direction. At the closed end of
the tube, the molecules of air have very little freedom to oscillate, and a node arises. At the open end, the molecules are free
to move, and at the right frequency, an antinode occurs. Unlike the symmetrical boundary conditions for the standing waves
on the string, the boundary conditions for a tube open at one end and closed at the other end are anti-symmetrical: a node at
the closed end and an antinode at the open end.

If the tuning fork has just the right frequency, the air column in the tube resonates loudly, but at most frequencies it
vibrates very little. This observation just means that the air column has only certain natural frequencies. Consider the lowest
frequency that will cause the tube to resonate, producing a loud sound. There will be a node at the closed end and an
antinode at the open end, as shown in Figure 17.19.

Figure 17.19 Resonance of air in a tube closed at one end,
caused by a tuning fork that vibrates at the lowest frequency that
can produce resonance (the fundamental frequency). A node
exists at the closed end and an antinode at the open end.

The standing wave formed in the tube has an antinode at the open end and a node at the closed end. The distance from a node
to an antinode is one-fourth of a wavelength, and this equals the length of the tube; thus, λ1 = 4L. This same resonance

can be produced by a vibration introduced at or near the closed end of the tube (Figure 17.20). It is best to consider this a
natural vibration of the air column, independently of how it is induced.
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Figure 17.20 The same standing wave is created in the tube by a vibration
introduced near its closed end.

Given that maximum air displacements are possible at the open end and none at the closed end, other shorter wavelengths
can resonate in the tube, such as the one shown in Figure 17.21. Here the standing wave has three-fourths of its wavelength

in the tube, or 3
4λ3 = L, so that λ3 = 4

3L. Continuing this process reveals a whole series of shorter-wavelength and

higher-frequency sounds that resonate in the tube. We use specific terms for the resonances in any system. The lowest
resonant frequency is called the fundamental, while all higher resonant frequencies are called overtones. All resonant
frequencies are integral multiples of the fundamental, and they are collectively called harmonics. The fundamental is the
first harmonic, the first overtone is the second harmonic, and so on. Figure 17.22 shows the fundamental and the first three
overtones (the first four harmonics) in a tube closed at one end.

Figure 17.21 Another resonance for a tube closed at one end.
This standing wave has maximum air displacement at the open
end and none at the closed end. The wavelength is shorter, with
three-fourths λ′ equaling the length of the tube, so that

λ′ = 4L/3 . This higher-frequency vibration is the first

overtone.

Figure 17.22 The fundamental and three lowest overtones for a tube closed at one end. All have maximum air
displacements at the open end and none at the closed end.

The relationship for the resonant wavelengths of a tube closed at one end is
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(17.13)λn = 4
nL n = 1, 3, 5, ...

Now let us look for a pattern in the resonant frequencies for a simple tube that is closed at one end. The fundamental has
λ = 4L, and frequency is related to wavelength and the speed of sound as given by

v = f λ.

Solving for f in this equation gives

f = v
λ = v

4L,

where v is the speed of sound in air. Similarly, the first overtone has λ = 4L/3 (see Figure 17.22), so that

f3 = 3 v
4L = 3 f1.

Because f3 = 3 f1, we call the first overtone the third harmonic. Continuing this process, we see a pattern that can be

generalized in a single expression. The resonant frequencies of a tube closed at one end are

(17.14)fn = n v
4L, n = 1, 3, 5, ...,

where f1 is the fundamental, f3 is the first overtone, and so on. It is interesting that the resonant frequencies depend on

the speed of sound and, hence, on temperature. This dependence poses a noticeable problem for organs in old unheated
cathedrals, and it is also the reason why musicians commonly bring their wind instruments to room temperature before
playing them.

Resonance in a Tube Open at Both Ends
Another source of standing waves is a tube that is open at both ends. In this case, the boundary conditions are symmetrical:
an antinode at each end. The resonances of tubes open at both ends can be analyzed in a very similar fashion to those for
tubes closed at one end. The air columns in tubes open at both ends have maximum air displacements at both ends (Figure
17.23). Standing waves form as shown.

Figure 17.23 The resonant frequencies of a tube open at both ends, including the fundamental and the first three overtones.
In all cases, the maximum air displacements occur at both ends of the tube, giving it different natural frequencies than a tube
closed at one end.

The relationship for the resonant wavelengths of a tube open at both ends is

(17.15)λn = 2
nL, n = 1, 2, 3,....

Based on the fact that a tube open at both ends has maximum air displacements at both ends, and using Figure 17.23 as a
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17.7

guide, we can see that the resonant frequencies of a tube open at both ends are

(17.16)fn = n v
2L, n = 1, 2, 3...,

where f1 is the fundamental, f2 is the first overtone, f3 is the second overtone, and so on. Note that a tube open at both

ends has a fundamental frequency twice what it would have if closed at one end. It also has a different spectrum of overtones
than a tube closed at one end.

Note that a tube open at both ends has symmetrical boundary conditions, similar to the string fixed at both ends discussed in
Waves. The relationships for the wavelengths and frequencies of a stringed instrument are the same as given in Equation

17.15 and Equation 17.16. The speed of the wave on the string (from Waves) is v = FT
µ . The air around the string

vibrates at the same frequency as the string, producing sound of the same frequency. The sound wave moves at the speed of
sound and the wavelength can be found using v = λ f .

Check Your Understanding How is it possible to use a standing wave’s node and antinode to
determine the length of a closed-end tube?

This video (https://openstaxcollege.org/l/21soundwaves) lets you visualize sound waves.

Check Your Understanding You observe two musical instruments that you cannot identify. One plays
high-pitched sounds and the other plays low-pitched sounds. How could you determine which is which without
hearing either of them play?

17.5 | Sources of Musical Sound

Learning Objectives

By the end of this section, you will be able to:

• Describe the resonant frequencies in instruments that can be modeled as a tube with
symmetrical boundary conditions

• Describe the resonant frequencies in instruments that can be modeled as a tube with anti-
symmetrical boundary conditions

Some musical instruments, such as woodwinds, brass, and pipe organs, can be modeled as tubes with symmetrical boundary
conditions, that is, either open at both ends or closed at both ends (Figure 17.24). Other instruments can be modeled
as tubes with anti-symmetrical boundary conditions, such as a tube with one end open and the other end closed (Figure
17.25).
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Figure 17.24 Some musical instruments can be modeled as a pipe open at both ends.

Figure 17.25 Some musical instruments can be modeled as a pipe closed at one end.

Resonant frequencies are produced by longitudinal waves that travel down the tubes and interfere with the reflected waves
traveling in the opposite direction. A pipe organ is manufactured with various tubes of fixed lengths to produce different
frequencies. The waves are the result of compressed air allowed to expand in the tubes. Even in open tubes, some reflection
occurs due to the constraints of the sides of the tubes and the atmospheric pressure outside the open tube.

The antinodes do not occur at the opening of the tube, but rather depend on the radius of the tube. The waves do not fully
expand until they are outside the open end of a tube, and for a thin-walled tube, an end correction should be added. This
end correction is approximately 0.6 times the radius of the tube and should be added to the length of the tube.

Players of instruments such as the flute or oboe vary the length of the tube by opening and closing finger holes. On a
trombone, you change the tube length by using a sliding tube. Bugles have a fixed length and can produce only a limited

882 Chapter 17 | Sound

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



range of frequencies.

The fundamental and overtones can be present simultaneously in a variety of combinations. For example, middle C on a
trumpet sounds distinctively different from middle C on a clarinet, although both instruments are modified versions of a
tube closed at one end. The fundamental frequency is the same (and usually the most intense), but the overtones and their
mix of intensities are different and subject to shading by the musician. This mix is what gives various musical instruments
(and human voices) their distinctive characteristics, whether they have air columns, strings, sounding boxes, or drumheads.
In fact, much of our speech is determined by shaping the cavity formed by the throat and mouth, and positioning the tongue
to adjust the fundamental and combination of overtones. For example, simple resonant cavities can be made to resonate with
the sound of the vowels (Figure 17.26). In boys at puberty, the larynx grows and the shape of the resonant cavity changes,
giving rise to the difference in predominant frequencies in speech between men and women.

Figure 17.26 The throat and mouth form an air column closed at one end that
resonates in response to vibrations in the voice box. The spectrum of overtones and
their intensities vary with mouth shaping and tongue position to form different
sounds. The voice box can be replaced with a mechanical vibrator, and
understandable speech is still possible. Variations in basic shapes make different
voices recognizable.

Example 17.6

Finding the Length of a Tube with a 128-Hz Fundamental

(a) What length should a tube closed at one end have on a day when the air temperature is

22.0°C if its fundamental frequency is to be 128 Hz (C below middle C)?

(b) What is the frequency of its fourth overtone?

Strategy

The length L can be found from the relationship fn = n v
4L , but we first need to find the speed of sound v.
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Solution
a. Identify knowns: The fundamental frequency is 128 Hz, and the air temperature is 22.0°C .

Use fn = n v
4L to find the fundamental frequency ( n = 1 ),

f1 = v
4L.

Solve this equation for length,

L = v
4 f1

.

Find the speed of sound using v = (331 m/s) T
273 K ,

v = (331 m/s) 295 K
273 K = 344 m/s.

Enter the values of the speed of sound and frequency into the expression for L.

L = v
4 f1

= 344 m/s
4(128 Hz) = 0.672 m

b. Identify knowns: The first overtone has n = 3 , the second overtone has n = 5 , the third overtone has

n = 7 , and the fourth overtone has n = 9 .

Enter the value for the fourth overtone into fn = n v
4L,

f9 = 9 v
4L = 9 f1 = 1.15 kHz.

Significance

Many wind instruments are modified tubes that have finger holes, valves, and other devices for changing the
length of the resonating air column and hence, the frequency of the note played. Horns producing very low
frequencies require tubes so long that they are coiled into loops. An example is the tuba. Whether an overtone
occurs in a simple tube or a musical instrument depends on how it is stimulated to vibrate and the details of its
shape. The trombone, for example, does not produce its fundamental frequency and only makes overtones.

If you have two tubes with the same fundamental frequency, but one is open at both ends and the other is closed at one
end, they would sound different when played because they have different overtones. Middle C, for example, would sound
richer played on an open tube, because it has even multiples of the fundamental as well as odd. A closed tube has only odd
multiples.

Resonance
Resonance occurs in many different systems, including strings, air columns, and atoms. As we discussed in earlier chapters,
resonance is the driven or forced oscillation of a system at its natural frequency. At resonance, energy is transferred rapidly
to the oscillating system, and the amplitude of its oscillations grows until the system can no longer be described by Hooke’s
law. An example of this is the distorted sound intentionally produced in certain types of rock music.

Wind instruments use resonance in air columns to amplify tones made by lips or vibrating reeds. Other instruments also use
air resonance in clever ways to amplify sound. Figure 17.27 shows a violin and a guitar, both of which have sounding
boxes but with different shapes, resulting in different overtone structures. The vibrating string creates a sound that resonates
in the sounding box, greatly amplifying the sound and creating overtones that give the instrument its characteristic timbre.
The more complex the shape of the sounding box, the greater its ability to resonate over a wide range of frequencies. The
marimba, like the one shown in Figure 17.28, uses pots or gourds below the wooden slats to amplify their tones. The
resonance of the pot can be adjusted by adding water.
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Figure 17.27 String instruments such as (a) violins and (b) guitars use resonance in their sounding boxes to amplify and enrich
the sound created by their vibrating strings. The bridge and supports couple the string vibrations to the sounding boxes and air
within. (credit a: modification of work by Feliciano Guimares; credit b: modification of work by Steve Snodgrass)

Figure 17.28 Resonance has been used in musical instruments since prehistoric times. This
marimba uses gourds as resonance chambers to amplify its sound. (credit: “APC Events”/Flickr)

We have emphasized sound applications in our discussions of resonance and standing waves, but these ideas apply to any
system that has wave characteristics. Vibrating strings, for example, are actually resonating and have fundamentals and
overtones similar to those for air columns. More subtle are the resonances in atoms due to the wave character of their
electrons. Their orbitals can be viewed as standing waves, which have a fundamental (ground state) and overtones (excited
states). It is fascinating that wave characteristics apply to such a wide range of physical systems.
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17.6 | Beats

Learning Objectives

By the end of this section, you will be able to:

• Determine the beat frequency produced by two sound waves that differ in frequency

• Describe how beats are produced by musical instruments

The study of music provides many examples of the superposition of waves and the constructive and destructive interference
that occurs. Very few examples of music being performed consist of a single source playing a single frequency for an
extended period of time. You will probably agree that a single frequency of sound for an extended period might be boring
to the point of irritation, similar to the unwanted drone of an aircraft engine or a loud fan. Music is pleasant and interesting
due to mixing the changing frequencies of various instruments and voices.

An interesting phenomenon that occurs due to the constructive and destructive interference of two or more frequencies of
sound is the phenomenon of beats. If two sounds differ in frequencies, the sound waves can be modeled as

y1 = A cos⎛
⎝k1 x − 2π f1 t⎞

⎠ and y2 = A cos⎛
⎝k2 x − 2π f2 t⎞

⎠.

Using the trigonometric identity cos u + cos v = 2 cos⎛
⎝
u + v

2
⎞
⎠cos⎛

⎝
u − v

2
⎞
⎠ and considering the point in space as

x = 0.0 m, we find the resulting sound at a point in space, from the superposition of the two sound waves, is equal to

Figure 17.29:

y(t) = 2A cos⎛
⎝2π favg t⎞

⎠cos⎛⎝2π⎛
⎝

| f2 − f1|
2

⎞
⎠t⎞⎠,

where the beat frequency is

(17.17)fbeat = | f2 − f1|.

886 Chapter 17 | Sound

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



17.8

Figure 17.29 Beats produced by the constructive and destructive interference of two sound waves that differ in frequency.

These beats can be used by piano tuners to tune a piano. A tuning fork is struck and a note is played on the piano. As the
piano tuner tunes the string, the beats have a lower frequency as the frequency of the note played approaches the frequency
of the tuning fork.

Example 17.7

Find the Beat Frequency Between Two Tuning Forks

What is the beat frequency produced when a tuning fork of a frequency of 256 Hz and a tuning fork of a frequency
of 512 Hz are struck simultaneously?

Strategy

The beat frequency is the difference of the two frequencies.

Solution

We use fbeat = | f2 − f1| :

| f2 − f1| = (512 − 256) Hz = 256 Hz.

Significance

The beat frequency is the absolute value of the difference between the two frequencies. A negative frequency
would not make sense.

Check Your Understanding What would happen if more than two frequencies interacted? Consider
three frequencies.
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The study of the superposition of various waves has many interesting applications beyond the study of sound. In later
chapters, we will discuss the wave properties of particles. The particles can be modeled as a “wave packet” that results from
the superposition of various waves, where the particle moves at the “group velocity” of the wave packet.

17.7 | The Doppler Effect

Learning Objectives

By the end of this section, you will be able to:

• Explain the change in observed frequency as a moving source of sound approaches or departs
from a stationary observer

• Explain the change in observed frequency as an observer moves toward or away from a
stationary source of sound

The characteristic sound of a motorcycle buzzing by is an example of the Doppler effect. Specifically, if you are standing
on a street corner and observe an ambulance with a siren sounding passing at a constant speed, you notice two characteristic
changes in the sound of the siren. First, the sound increases in loudness as the ambulance approaches and decreases in
loudness as it moves away, which is expected. But in addition, the high-pitched siren shifts dramatically to a lower-pitched
sound. As the ambulance passes, the frequency of the sound heard by a stationary observer changes from a constant high
frequency to a constant lower frequency, even though the siren is producing a constant source frequency. The closer the
ambulance brushes by, the more abrupt the shift. Also, the faster the ambulance moves, the greater the shift. We also hear
this characteristic shift in frequency for passing cars, airplanes, and trains.

The Doppler effect is an alteration in the observed frequency of a sound due to motion of either the source or the observer.
Although less familiar, this effect is easily noticed for a stationary source and moving observer. For example, if you ride a
train past a stationary warning horn, you will hear the horn’s frequency shift from high to low as you pass by. The actual
change in frequency due to relative motion of source and observer is called a Doppler shift. The Doppler effect and Doppler
shift are named for the Austrian physicist and mathematician Christian Johann Doppler (1803–1853), who did experiments
with both moving sources and moving observers. Doppler, for example, had musicians play on a moving open train car and
also play standing next to the train tracks as a train passed by. Their music was observed both on and off the train, and
changes in frequency were measured.

What causes the Doppler shift? Figure 17.30 illustrates sound waves emitted by stationary and moving sources in a
stationary air mass. Each disturbance spreads out spherically from the point at which the sound is emitted. If the source is
stationary, then all of the spheres representing the air compressions in the sound wave are centered on the same point, and
the stationary observers on either side hear the same wavelength and frequency as emitted by the source (case a). If the
source is moving, the situation is different. Each compression of the air moves out in a sphere from the point at which it
was emitted, but the point of emission moves. This moving emission point causes the air compressions to be closer together
on one side and farther apart on the other. Thus, the wavelength is shorter in the direction the source is moving (on the
right in case b), and longer in the opposite direction (on the left in case b). Finally, if the observers move, as in case (c),
the frequency at which they receive the compressions changes. The observer moving toward the source receives them at a
higher frequency, and the person moving away from the source receives them at a lower frequency.
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Figure 17.30 Sounds emitted by a source spread out in spherical waves. (a) When the source, observers, and air are stationary,
the wavelength and frequency are the same in all directions and to all observers. (b) Sounds emitted by a source moving to the
right spread out from the points at which they were emitted. The wavelength is reduced, and consequently, the frequency is
increased in the direction of motion, so that the observer on the right hears a higher-pitched sound. The opposite is true for the
observer on the left, where the wavelength is increased and the frequency is reduced. (c) The same effect is produced when the
observers move relative to the source. Motion toward the source increases frequency as the observer on the right passes through
more wave crests than she would if stationary. Motion away from the source decreases frequency as the observer on the left
passes through fewer wave crests than he would if stationary.

We know that wavelength and frequency are related by v = f λ, where v is the fixed speed of sound. The sound moves

in a medium and has the same speed v in that medium whether the source is moving or not. Thus, f multiplied by λ is a

constant. Because the observer on the right in case (b) receives a shorter wavelength, the frequency she receives must be
higher. Similarly, the observer on the left receives a longer wavelength, and hence he hears a lower frequency. The same
thing happens in case (c). A higher frequency is received by the observer moving toward the source, and a lower frequency
is received by an observer moving away from the source. In general, then, relative motion of source and observer toward
one another increases the received frequency. Relative motion apart decreases frequency. The greater the relative speed, the
greater the effect.

The Doppler effect occurs not only for sound, but for any wave when there is relative motion between the observer and
the source. Doppler shifts occur in the frequency of sound, light, and water waves, for example. Doppler shifts can be used
to determine velocity, such as when ultrasound is reflected from blood in a medical diagnostic. The relative velocities of
stars and galaxies is determined by the shift in the frequencies of light received from them and has implied much about the
origins of the universe. Modern physics has been profoundly affected by observations of Doppler shifts.

Derivation of the Observed Frequency due to the Doppler Shift
Consider two stationary observers X and Y in Figure 17.31, located on either side of a stationary source. Each observer
hears the same frequency, and that frequency is the frequency produced by the stationary source.
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Figure 17.31 A stationary source sends out sound waves at a constant frequency
fs, with a constant wavelength λs, at the speed of sound v. Two stationary

observers X and Y, on either side of the source, observe a frequency fo = fs , with a

wavelength λo = λs.

Now consider a stationary observer X with a source moving away from the observer with a constant speed vs < v (Figure

17.32). At time t = 0 , the source sends out a sound wave, indicated in black. This wave moves out at the speed of sound v.

The position of the sound wave at each time interval of period Ts is shown as dotted lines. After one period, the source has

moved Δx = vs Ts and emits a second sound wave, which moves out at the speed of sound. The source continues to move

and produce sound waves, as indicated by the circles numbered 3 and 4. Notice that as the waves move out, they remained
centered at their respective point of origin.

Figure 17.32 A source moving at a constant speed vs away from an observer X. The moving source sends out sound waves at

a constant frequency fs, with a constant wavelength λs , at the speed of sound v. Snapshots of the source at an interval of Ts
are shown as the source moves away from the stationary observer X. The solid lines represent the position of the sound waves
after four periods from the initial time. The dotted lines are used to show the positions of the waves at each time period. The
observer hears a wavelength of λo = λs + Δx = λs + vs Ts .

Using the fact that the wavelength is equal to the speed times the period, and the period is the inverse of the frequency, we
can derive the observed frequency:

λo = λs + Δx
vTo = vTs + vs Ts

v
fo

= v
fs

= vs
fs

= v + vs
fs

fo = fs
⎛
⎝

v
v + vs

⎞
⎠.
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As the source moves away from the observer, the observed frequency is lower than the source frequency.

Now consider a source moving at a constant velocity vs, moving toward a stationary observer Y, also shown in Figure

17.32. The wavelength is observed by Y as λo = λs − Δx = λs − vs Ts. Once again, using the fact that the wavelength is

equal to the speed times the period, and the period is the inverse of the frequency, we can derive the observed frequency:

λo = λs − Δx
vTo = vTs − vs Ts

v
fo

= v
fs

− vs
fs

= v − vs
fs

fo = fs
⎛
⎝

v
v − vs

⎞
⎠.

When a source is moving and the observer is stationary, the observed frequency is

(17.18)fo = fs
⎛
⎝

v
v ∓ vs

⎞
⎠ '

where fo is the frequency observed by the stationary observer, fs is the frequency produced by the moving source, v is

the speed of sound, vs is the constant speed of the source, and the top sign is for the source approaching the observer and

the bottom sign is for the source departing from the observer.

What happens if the observer is moving and the source is stationary? If the observer moves toward the stationary source,
the observed frequency is higher than the source frequency. If the observer is moving away from the stationary source, the
observed frequency is lower than the source frequency. Consider observer X in Figure 17.33 as the observer moves toward
a stationary source with a speed vo . The source emits a tone with a constant frequency fs and constant period Ts. The

observer hears the first wave emitted by the source. If the observer were stationary, the time for one wavelength of sound
to pass should be equal to the period of the source Ts. Since the observer is moving toward the source, the time for one

wavelength to pass is less than Ts and is equal to the observed period To = Ts − Δt. At time t = 0, the observer starts

at the beginning of a wavelength and moves toward the second wavelength as the wavelength moves out from the source.
The wavelength is equal to the distance the observer traveled plus the distance the sound wave traveled until it is met by the
observer:

λs = vTo + vo To
vTs = (v + vo)To

v⎛
⎝

1
fs

⎞
⎠ = (v + vo)⎛⎝

1
fo

⎞
⎠

fo = fs
⎛
⎝
v + vo

v
⎞
⎠.
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Figure 17.33 A stationary source emits a sound wave with a
constant frequency fs , with a constant wavelength λs moving

at the speed of sound v. Observer X moves toward the source
with a constant speed vo , and the figure shows the initial and

final position of observer X. Observer X observes a frequency
higher than the source frequency. The solid lines show the
position of the waves at t = 0 . The dotted lines show the

position of the waves at t = To .

If the observer is moving away from the source (Figure 17.34), the observed frequency can be found:

λs = vTo − vo To
vTs = (v − vo)To

v⎛
⎝

1
fs

⎞
⎠ = (v − vo)⎛⎝

1
fo

⎞
⎠

fo = fs
⎛
⎝
v − vo

v
⎞
⎠.

Figure 17.34 A stationary source emits a sound wave with a
constant frequency fs , with a constant wavelength λs moving

at the speed of sound v. Observer Y moves away from the source
with a constant speed vo , and the figure shows initial and final

position of the observer Y. Observer Y observes a frequency
lower than the source frequency. The solid lines show the
position of the waves at t = 0 . The dotted lines show the

position of the waves at t = To .
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The equations for an observer moving toward or away from a stationary source can be combined into one equation:

(17.19)fo = fs
⎛
⎝
v ± vo

v
⎞
⎠,

where fo is the observed frequency, fs is the source frequency, vw is the speed of sound, vo is the speed of the observer,

the top sign is for the observer approaching the source and the bottom sign is for the observer departing from the source.

Equation 17.18 and Equation 17.19 can be summarized in one equation (the top sign is for approaching) and is further
illustrated in Table 17.4:

(17.20)fo = fs
⎛
⎝
v ± vo
v ∓ vs

⎞
⎠,

Doppler shift

fo = fs
⎛
⎝
v ± vo
v ∓ vs

⎞
⎠

Stationary
observer

Observer moving
towards source

Observer moving away
from source

Stationary source fo = fs fo = fs
⎛
⎝
v + vo

v
⎞
⎠ fo = fs

⎛
⎝
v − vo

v
⎞
⎠

Source moving towards
observer

fo = fs
⎛
⎝

v
v − vs

⎞
⎠ fo = fs

⎛
⎝
v + vo
v − vs

⎞
⎠ fo = fs

⎛
⎝
v − vo
v − vs

⎞
⎠

Source moving away
from observer

fo = fs
⎛
⎝

v
v + vs

⎞
⎠ fo = fs

⎛
⎝
v + vo
v + vs

⎞
⎠ fo = fs

⎛
⎝
v − vo
v + vs

⎞
⎠

Table 17.4

where fo is the observed frequency, fs is the source frequency, vw is the speed of sound, vo is the speed of the observer,

vs is the speed of the source, the top sign is for approaching and the bottom sign is for departing.

The Doppler effect involves motion and a video (https://openstaxcollege.org/l/21doppler) will help
visualize the effects of a moving observer or source. This video shows a moving source and a stationary observer,
and a moving observer and a stationary source. It also discusses the Doppler effect and its application to light.

Example 17.8

Calculating a Doppler Shift

Suppose a train that has a 150-Hz horn is moving at 35.0 m/s in still air on a day when the speed of sound is 340
m/s.

(a) What frequencies are observed by a stationary person at the side of the tracks as the train approaches and after
it passes?

(b) What frequency is observed by the train’s engineer traveling on the train?

Strategy

To find the observed frequency in (a), we must use fobs = fs
⎛
⎝

v
v ∓ vs

⎞
⎠ because the source is moving. The minus

sign is used for the approaching train, and the plus sign for the receding train. In (b), there are two Doppler
shifts—one for a moving source and the other for a moving observer.
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Solution

a. Enter known values into fo = fs
⎛
⎝

v
v − vs

⎞
⎠ :

fo = fs
⎛
⎝

v
v − vs

⎞
⎠ = (150 Hz)⎛⎝

340 m/s
340 m/s − 35.0 m/s

⎞
⎠.

Calculate the frequency observed by a stationary person as the train approaches:

fo = (150 Hz)(1.11) = 167 Hz.

Use the same equation with the plus sign to find the frequency heard by a stationary person as the train
recedes:

fo = fs
⎛
⎝

v
v + vs

⎞
⎠ = (150 Hz)⎛⎝

340 m/s
340 m/s + 35.0 m/s

⎞
⎠.

Calculate the second frequency:

fo = (150 Hz)(0.907) = 136 Hz.

b. Identify knowns:

◦ It seems reasonable that the engineer would receive the same frequency as emitted by the horn,
because the relative velocity between them is zero.

◦ Relative to the medium (air), the speeds are vs = vo = 35.0 m/s.

◦ The first Doppler shift is for the moving observer; the second is for the moving source.

Use the following equation:

fo = ⎡
⎣ fs

⎛
⎝
v ± vo

v
⎞
⎠
⎤
⎦
⎛
⎝

v
v ∓ vs

⎞
⎠.

The quantity in the square brackets is the Doppler-shifted frequency due to a moving observer. The factor
on the right is the effect of the moving source.
Because the train engineer is moving in the direction toward the horn, we must use the plus sign for vobs;
however, because the horn is also moving in the direction away from the engineer, we also use the plus
sign for vs. But the train is carrying both the engineer and the horn at the same velocity, so vs = vo. As

a result, everything but fs cancels, yielding

fo = fs.

Significance

For the case where the source and the observer are not moving together, the numbers calculated are valid when
the source (in this case, the train) is far enough away that the motion is nearly along the line joining source and
observer. In both cases, the shift is significant and easily noticed. Note that the shift is 17.0 Hz for motion toward
and 14.0 Hz for motion away. The shifts are not symmetric.

For the engineer riding in the train, we may expect that there is no change in frequency because the source and
observer move together. This matches your experience. For example, there is no Doppler shift in the frequency of
conversations between driver and passenger on a motorcycle. People talking when a wind moves the air between
them also observe no Doppler shift in their conversation. The crucial point is that source and observer are not
moving relative to each other.

Check Your Understanding Describe a situation in your life when you might rely on the Doppler shift
to help you either while driving a car or walking near traffic.
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The Doppler effect and the Doppler shift have many important applications in science and engineering. For example, the
Doppler shift in ultrasound can be used to measure blood velocity, and police use the Doppler shift in radar (a microwave) to
measure car velocities. In meteorology, the Doppler shift is used to track the motion of storm clouds; such “Doppler Radar”
can give the velocity and direction of rain or snow in weather fronts. In astronomy, we can examine the light emitted from
distant galaxies and determine their speed relative to ours. As galaxies move away from us, their light is shifted to a lower
frequency, and so to a longer wavelength—the so-called red shift. Such information from galaxies far, far away has allowed
us to estimate the age of the universe (from the Big Bang) as about 14 billion years.

17.8 | Shock Waves

Learning Objectives

By the end of this section, you will be able to:

• Explain the mechanism behind sonic booms

• Describe the difference between sonic booms and shock waves

• Describe a bow wake

When discussing the Doppler effect of a moving source and a stationary observer, the only cases we considered were cases
where the source was moving at speeds that were less than the speed of sound. Recall that the observed frequency for a

moving source approaching a stationary observer is fo = fs
⎛
⎝

v
v − vs

⎞
⎠. As the source approaches the speed of sound, the

observed frequency increases. According to the equation, if the source moves at the speed of sound, the denominator is
equal to zero, implying the observed frequency is infinite. If the source moves at speeds greater than the speed of sound, the
observed frequency is negative.

What could this mean? What happens when a source approaches the speed of sound? It was once argued by some scientists
that such a large pressure wave would result from the constructive interference of the sound waves, that it would be
impossible for a plane to exceed the speed of sound because the pressures would be great enough to destroy the airplane.
But now planes routinely fly faster than the speed of sound. On July 28, 1976, Captain Eldon W. Joersz and Major George
T. Morgan flew a Lockheed SR-71 Blackbird #61-7958 at 3529.60 km/h (2193.20 mi/h), which is Mach 2.85. The Mach
number is the speed of the source divided by the speed of sound:

(17.21)M = vs
v .

You will see that interesting phenomena occur when a source approaches and exceeds the speed of sound.

Doppler Effect and High Velocity
What happens to the sound produced by a moving source, such as a jet airplane, that approaches or even exceeds the speed
of sound? The answer to this question applies not only to sound but to all other waves as well. Suppose a jet plane is coming
nearly straight at you, emitting a sound of frequency fs. The greater the plane’s speed vs, the greater the Doppler shift

and the greater the value observed for fo (Figure 17.35).
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Figure 17.35 Because of the Doppler shift, as a moving source approaches a stationary observer, the observed frequency is
higher than the source frequency. The faster the source is moving, the higher the observed frequency. In this figure, the source in
(b) is moving faster than the source in (a). Shown are four time steps, the first three shown as dotted lines. (c) If a source moves
at the speed of sound, each successive wave interfere with the previous one and the observer observes them all at the same
instant.

Now, as vs approaches the speed of sound, fo approaches infinity, because the denominator in fo = fs
⎛
⎝

v
v ∓ vs

⎞
⎠

approaches zero. At the speed of sound, this result means that in front of the source, each successive wave interferes with
the previous one because the source moves forward at the speed of sound. The observer gets them all at the same instant, so
the frequency is infinite [part (c) of the figure].

Shock Waves and Sonic Booms
If the source exceeds the speed of sound, no sound is received by the observer until the source has passed, so that the
sounds from the approaching source are mixed with those from it when receding. This mixing appears messy, but something
interesting happens—a shock wave is created (Figure 17.36).

Figure 17.36 Sound waves from a source that moves faster than the speed of sound spread spherically from
the point where they are emitted, but the source moves ahead of each wave. Constructive interference along the
lines shown (actually a cone in three dimensions) creates a shock wave called a sonic boom. The faster the
speed of the source, the smaller the angle θ .
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Constructive interference along the lines shown (a cone in three dimensions) from similar sound waves arriving there
simultaneously. This superposition forms a disturbance called a shock wave, a constructive interference of sound created
by an object moving faster than sound. Inside the cone, the interference is mostly destructive, so the sound intensity there
is much less than on the shock wave. The angle of the shock wave can be found from the geometry. In time t the source has

moved vs t and the sound wave has moved a distance vt and the angle can be found using sin θ = vt
vs t = v

vs
. Note that the

Mach number is defined as
vs
v so the sine of the angle equals the inverse of the Mach number,

(17.22)sin θ = v
ws

= 1
M .

You may have heard of the common term ‘ sonic boom.’ A common misconception is that the sonic boom occurs as the
plane breaks the sound barrier; that is, accelerates to a speed higher than the speed of sound. Actually, the sonic boom occurs
as the shock wave sweeps along the ground.

An aircraft creates two shock waves, one from its nose and one from its tail (Figure 17.37). During television coverage
of space shuttle landings, two distinct booms could often be heard. These were separated by exactly the time it would take
the shuttle to pass by a point. Observers on the ground often do not see the aircraft creating the sonic boom, because it has
passed by before the shock wave reaches them, as seen in the figure. If the aircraft flies close by at low altitude, pressures
in the sonic boom can be destructive and break windows as well as rattle nerves. Because of how destructive sonic booms
can be, supersonic flights are banned over populated areas.

Figure 17.37 Two sonic booms experienced by observers, created by the nose and tail of an
aircraft as the shock wave sweeps along the ground, are observed on the ground after the plane
has passed by.
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Shock waves are one example of a broader phenomenon called bow wakes. A bow wake, such as the one in Figure 17.38,
is created when the wave source moves faster than the wave propagation speed. Water waves spread out in circles from
the point where created, and the bow wake is the familiar V-shaped wake, trailing the source. A more exotic bow wake
is created when a subatomic particle travels through a medium faster than the speed of light travels in that medium. (In a

vacuum, the maximum speed of light is c = 3.00 × 108 m/s; in the medium of water, the speed of light is closer to 0.75c.)

If the particle creates light in its passage, that light spreads on a cone with an angle indicative of the speed of the particle, as
illustrated in Figure 17.39. Such a bow wake is called Cerenkov radiation and is commonly observed in particle physics.

Figure 17.38 Bow wake created by a duck. Constructive
interference produces the rather structured wake, whereas
relatively little wave action occurs inside the wake, where
interference is mostly destructive. (credit: Horia Varlan)

Figure 17.39 The blue glow in this research reactor pool is
Cerenkov radiation caused by subatomic particles traveling
faster than the speed of light in water. (credit: U.S. Nuclear
Regulatory Commission)
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phon
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shock wave

sonic boom

sound

sound intensity level

sound pressure level
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CHAPTER 17 REVIEW

KEY TERMS
frequency of beats produced by sound waves that differ in frequency

constructive and destructive interference of two or more frequencies of sound

v-shaped disturbance created when the wave source moves faster than the wave propagation speed

alteration in the observed frequency of a sound due to motion of either the source or the observer

actual change in frequency due to relative motion of source and observer

the lowest-frequency resonance

the term used to refer collectively to the fundamental and its overtones

perception of sound

perception of sound intensity

basic unit of music with specific names, combined to generate tunes

all resonant frequencies higher than the fundamental

numerical unit of loudness

perception of the frequency of a sound

wave front that is produced when a sound source moves faster than the speed of sound

loud noise that occurs as a shock wave as it sweeps along the ground

traveling pressure wave that may be periodic; the wave can be modeled as a pressure wave or as an oscillation of
molecules

unitless quantity telling you the level of the sound relative to a fixed standard

ratio of the pressure amplitude to a reference pressure

number and relative intensity of multiple sound frequencies

device that converts energy of a signal into measurable energy form, for example, a microphone converts
sound waves into an electrical signal

KEY EQUATIONS
Pressure of a sound wave ΔP = ΔPmax sin⎛

⎝kx ∓ ωt + ϕ⎞
⎠

Displacement of the oscillating molecules of a
sound wave

s(x, t) = smax cos⎛
⎝kx ∓ ωt + ϕ⎞

⎠

Velocity of a wave v = f λ

Speed of sound in a fluid
v = β

ρ

Speed of sound in a solid v = Y
ρ

Speed of sound in an ideal gas
v = γRT

M

Speed of sound in air as a function of temperature
v = 331m

s
TK

273 K = 331m
s 1 + TC

273°C
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Decrease in intensity as a spherical wave expands
I2 = I1

⎛
⎝
r1
r2

⎞
⎠

2

Intensity averaged over a period I = 〈 P 〉
A

Intensity of sound
I =

⎛
⎝Δpmax

⎞
⎠
2

2ρv

Sound intensity level β(dB) = 10 log10
⎛
⎝

I
I0

⎞
⎠

Resonant wavelengths of a tube closed at one end λn = 4
nL, n = 1, 3, 5,…

Resonant frequencies of a tube closed at one end fn = n v
4L, n = 1, 3, 5,…

Resonant wavelengths of a tube open at both ends λn = 2
nL, n = 1, 2, 3,…

Resonant frequencies of a tube open at both ends fn = n v
2L, n = 1, 2, 3,…

Beat frequency produced by two waves that
differ in frequency

fbeat = | f2 − f1|

Observed frequency for a stationary observer
and a moving source

fo = fs
⎛
⎝

v
v ∓ vs

⎞
⎠

Observed frequency for a moving observer
and a stationary source

fo = fs
⎛
⎝
v ± vo

v
⎞
⎠

Doppler shift for the observed frequency fo = fs
⎛
⎝
v ± vo
v ∓ vs

⎞
⎠

Mach number M = vs
v

Sine of angle formed by shock wave sin θ = v
vs

= 1
M

SUMMARY

17.1 Sound Waves

• Sound is a disturbance of matter (a pressure wave) that is transmitted from its source outward. Hearing is the
perception of sound.

• Sound can be modeled in terms of pressure or in terms of displacement of molecules.

• The human ear is sensitive to frequencies between 20 Hz and 20 kHz.

17.2 Speed of Sound

• The speed of sound depends on the medium and the state of the medium.

• In a fluid, because the absence of shear forces, sound waves are longitudinal. A solid can support both longitudinal
and transverse sound waves.

• In air, the speed of sound is related to air temperature T by v = 331m
s

TK
273 K = 331m

s 1 + TC
273°C.

• v is the same for all frequencies and wavelengths of sound in air.
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17.3 Sound Intensity

• Intensity I = P/A is the same for a sound wave as was defined for all waves, where P is the power crossing area A.

The SI unit for I is watts per meter squared. The intensity of a sound wave is also related to the pressure amplitude
Δp:

I = (Δp)2

2 ρv ,

where ρ is the density of the medium in which the sound wave travels and vw is the speed of sound in the medium.

• Sound intensity level in units of decibels (dB) is

β(dB) = 10 log10
⎛
⎝

I
I0

⎞
⎠,

where I0 = 10−12 W/m2 is the threshold intensity of hearing.

• The perception of frequency is pitch. The perception of intensity is loudness and loudness has units of phons.

17.4 Normal Modes of a Standing Sound Wave

• Unwanted sound can be reduced using destructive interference.

• Sound has the same properties of interference and resonance as defined for all waves.

• In air columns, the lowest-frequency resonance is called the fundamental, whereas all higher resonant frequencies
are called overtones. Collectively, they are called harmonics.

17.5 Sources of Musical Sound

• Some musical instruments can be modeled as pipes that have symmetrical boundary conditions: open at both ends
or closed at both ends. Other musical instruments can be modeled as pipes that have anti-symmetrical boundary
conditions: closed at one end and open at the other.

• Some instruments, such as the pipe organ, have several tubes with different lengths. Instruments such as the flute
vary the length of the tube by closing the holes along the tube. The trombone varies the length of the tube using a
sliding bar.

• String instruments produce sound using a vibrating string with nodes at each end. The air around the string oscillates
at the frequency of the string. The relationship for the frequencies for the string is the same as for the symmetrical
boundary conditions of the pipe, with the length of the pipe replaced by the length of the string and the velocity

replaced by v = FT
µ .

17.6 Beats

• When two sound waves that differ in frequency interfere, beats are created with a beat frequency that is equal to the
absolute value of the difference in the frequencies.

17.7 The Doppler Effect

• The Doppler effect is an alteration in the observed frequency of a sound due to motion of either the source or the
observer.

• The actual change in frequency is called the Doppler shift.

17.8 Shock Waves

• The Mach number is the velocity of a source divided by the speed of sound, M = vs
v .
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• When a sound source moves faster than the speed of sound, a shock wave is produced as the sound waves interfere.

• A sonic boom is the intense sound that occurs as the shock wave moves along the ground.

• The angle the shock wave produces can be found as sin θ = v
vs

= 1
M .

• A bow wake is produced when an object moves faster than the speed of a mechanical wave in the medium, such as
a boat moving through the water.

CONCEPTUAL QUESTIONS

17.1 Sound Waves

1. What is the difference between sound and hearing?

2. You will learn that light is an electromagnetic wave
that can travel through a vacuum. Can sound waves travel
through a vacuum?

3. Sound waves can be modeled as a change in pressure.
Why is the change in pressure used and not the actual
pressure?

17.2 Speed of Sound

4. How do sound vibrations of atoms differ from thermal
motion?

5. When sound passes from one medium to another where
its propagation speed is different, does its frequency or
wavelength change? Explain your answer briefly.

6. A popular party trick is to inhale helium and speak in a
high-frequency, funny voice. Explain this phenomenon.

7. You may have used a sonic range finder in lab to
measure the distance of an object using a clicking sound
from a sound transducer. What is the principle used in this
device?

8. The sonic range finder discussed in the preceding
question often needs to be calibrated. During the
calibration, the software asks for the room temperature.
Why do you suppose the room temperature is required?

17.3 Sound Intensity

9. Six members of a synchronized swim team wear
earplugs to protect themselves against water pressure at
depths, but they can still hear the music and perform the
combinations in the water perfectly. One day, they were
asked to leave the pool so the dive team could practice a
few dives, and they tried to practice on a mat, but seemed
to have a lot more difficulty. Why might this be?

10. A community is concerned about a plan to bring train

service to their downtown from the town’s outskirts. The
current sound intensity level, even though the rail yard is
blocks away, is 70 dB downtown. The mayor assures the
public that there will be a difference of only 30 dB in
sound in the downtown area. Should the townspeople be
concerned? Why?

17.4 Normal Modes of a Standing Sound Wave

11. You are given two wind instruments of identical
length. One is open at both ends, whereas the other is closed
at one end. Which is able to produce the lowest frequency?

12. What is the difference between an overtone and a
harmonic? Are all harmonics overtones? Are all overtones
harmonics?

13. Two identical columns, open at both ends, are in
separate rooms. In room A, the temperature is T = 20°C
and in room B, the temperature is T = 25°C . A speaker

is attached to the end of each tube, causing the tubes to
resonate at the fundamental frequency. Is the frequency the
same for both tubes? Which has the higher frequency?

17.5 Sources of Musical Sound

14. How does an unamplified guitar produce sounds so
much more intense than those of a plucked string held taut
by a simple stick?

15. Consider three pipes of the same length (L). Pipe
A is open at both ends, pipe B is closed at both ends,
and pipe C has one open end and one closed end. If the
velocity of sound is the same in each of the three tubes, in
which of the tubes could the lowest fundamental frequency
be produced? In which of the tubes could the highest
fundamental frequency be produced?

16. Pipe A has a length L and is open at both ends. Pipe B
has a length L/2 and has one open end and one closed end.
Assume the speed of sound to be the same in both tubes.
Which of the harmonics in each tube would be equal?

17. A string is tied between two lab posts a distance L
apart. The tension in the string and the linear mass density
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is such that the speed of a wave on the string is
v = 343 m/s. A tube with symmetric boundary conditions

has a length L and the speed of sound in the tube is
v = 343 m/s. What could be said about the frequencies

of the harmonics in the string and the tube? What if the
velocity in the string were v = 686 m/s ?

17.6 Beats

18. Two speakers are attached to variable-frequency signal
generator. Speaker A produces a constant-frequency sound
wave of 1.00 kHz, and speaker B produces a tone of 1.10
kHz. The beat frequency is 0.10 kHz. If the frequency
of each speaker is doubled, what is the beat frequency
produced?

19. The label has been scratched off a tuning fork and you
need to know its frequency. From its size, you suspect that
it is somewhere around 250 Hz. You find a 250-Hz tuning
fork and a 270-Hz tuning fork. When you strike the 250-Hz
fork and the fork of unknown frequency, a beat frequency
of 5 Hz is produced. When you strike the unknown with
the 270-Hz fork, the beat frequency is 15 Hz. What is
the unknown frequency? Could you have deduced the
frequency using just the 250-Hz fork?

20. Referring to the preceding question, if you had only
the 250-Hz fork, could you come up with a solution to the
problem of finding the unknown frequency?

21. A “showy” custom-built car has two brass horns that
are supposed to produce the same frequency but actually
emit 263.8 and 264.5 Hz. What beat frequency is
produced?

17.7 The Doppler Effect

22. Is the Doppler shift real or just a sensory illusion?

23. Three stationary observers observe the Doppler shift
from a source moving at a constant velocity. The observers
are stationed as shown below. Which observer will observe

the highest frequency? Which observer will observe the
lowest frequency? What can be said about the frequency
observed by observer 3?

24. Shown below is a stationary source and moving
observers. Describe the frequencies observed by the
observers for this configuration.

25. Prior to 1980, conventional radar was used by weather
forecasters. In the 1960s, weather forecasters began to
experiment with Doppler radar. What do you think is the
advantage of using Doppler radar?

17.8 Shock Waves

26. What is the difference between a sonic boom and a
shock wave?

27. Due to efficiency considerations related to its bow
wake, the supersonic transport aircraft must maintain a
cruising speed that is a constant ratio to the speed of sound
(a constant Mach number). If the aircraft flies from warm
air into colder air, should it increase or decrease its speed?
Explain your answer.

28. When you hear a sonic boom, you often cannot see the
plane that made it. Why is that?

PROBLEMS

17.1 Sound Waves

29. Consider a sound wave modeled with the equation

s(x, t) = 4.00 nm cos⎛
⎝3.66 m−1 x − 1256 s−1 t⎞

⎠. What is

the maximum displacement, the wavelength, the frequency,
and the speed of the sound wave?

30. Consider a sound wave moving through the air
modeled with the equation

s(x, t) = 6.00 nm cos⎛
⎝54.93 m−1 x − 18.84 × 103 s−1 t⎞

⎠.

What is the shortest time required for an air molecule to
move between 3.00 nm and –3.00 nm?

31. Consider a diagnostic ultrasound of frequency 5.00
MHz that is used to examine an irregularity in soft tissue.
(a) What is the wavelength in air of such a sound wave if
the speed of sound is 343 m/s? (b) If the speed of sound in
tissue is 1800 m/s, what is the wavelength of this wave in
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tissue?

32. A sound wave is modeled as

ΔP = 1.80 Pa sin⎛
⎝55.41 m−1 x − 18,840 s−1 t⎞

⎠. What is

the maximum change in pressure, the wavelength, the
frequency, and the speed of the sound wave?

33. A sound wave is modeled with the wave function

ΔP = 1.20 Pa sin⎛
⎝kx − 6.28 × 104 s−1 t⎞

⎠ and the sound

wave travels in air at a speed of v = 343.00 m/s. (a) What

is the wave number of the sound wave? (b) What is the
value for ΔP(3.00 m, 20.00 s) ?

34. The displacement of the air molecules in sound wave
is modeled with the wave function

s(x, t) = 5.00 nm cos⎛
⎝91.54 m−1 x − 3.14 × 104 s−1 t⎞

⎠ .

(a) What is the wave speed of the sound wave? (b) What is
the maximum speed of the air molecules as they oscillate in
simple harmonic motion? (c) What is the magnitude of the
maximum acceleration of the air molecules as they oscillate
in simple harmonic motion?

35. A speaker is placed at the opening of a long horizontal
tube. The speaker oscillates at a frequency f, creating a
sound wave that moves down the tube. The wave moves
through the tube at a speed of v = 340.00 m/s. The sound

wave is modeled with the wave function
s(x, t) = smax cos⎛

⎝kx − ωt + ϕ⎞
⎠. At time t = 0.00 s , an

air molecule at x = 3.5 m is at the maximum displacement

of 7.00 nm. At the same time, another molecule at
x = 3.7 m has a displacement of 3.00 nm. What is the

frequency at which the speaker is oscillating?

36. A 250-Hz tuning fork is struck and begins to vibrate.
A sound-level meter is located 34.00 m away. It takes
the sound Δt = 0.10 s to reach the meter. The maximum

displacement of the tuning fork is 1.00 mm. Write a wave
function for the sound.

37. A sound wave produced by an ultrasonic transducer,
moving in air, is modeled with the wave equation

s(x, t) = 4.50 nm cos⎛
⎝9.15 × 104 m−1 x − 2π(5.00 MHz)t⎞

⎠.

The transducer is to be used in nondestructive testing to test
for fractures in steel beams. The speed of sound in the steel
beam is v = 5950 m/s. Find the wave function for the

sound wave in the steel beam.

38. Porpoises emit sound waves that they use for
navigation. If the wavelength of the sound wave emitted
is 4.5 cm, and the speed of sound in the water is
v = 1530 m/s, what is the period of the sound?

39. Bats use sound waves to catch insects. Bats can detect
frequencies up to 100 kHz. If the sound waves travel
through air at a speed of v = 343 m/s, what is the

wavelength of the sound waves?

40. A bat sends of a sound wave 100 kHz and the sound
waves travel through air at a speed of v = 343 m/s. (a) If

the maximum pressure difference is 1.30 Pa, what is a wave
function that would model the sound wave, assuming the
wave is sinusoidal? (Assume the phase shift is zero.) (b)
What are the period and wavelength of the sound wave?

41. Consider the graph shown below of a compression
wave. Shown are snapshots of the wave function for
t = 0.000 s (blue) and t = 0.005 s (orange). What are the

wavelength, maximum displacement, velocity, and period
of the compression wave?

42. Consider the graph in the preceding problem of a
compression wave. Shown are snapshots of the wave
function for t = 0.000 s (blue) and t = 0.005 s (orange).

Given that the displacement of the molecule at time
t = 0.00 s and position x = 0.00 m is

s(0.00 m, 0.00 s) = 1.08 mm, derive a wave function to

model the compression wave.

43. A guitar string oscillates at a frequency of 100 Hz
and produces a sound wave. (a) What do you think the
frequency of the sound wave is that the vibrating string
produces? (b) If the speed of the sound wave is
v = 343 m/s, , what is the wavelength of the sound wave?

17.2 Speed of Sound

44. When poked by a spear, an operatic soprano lets out
a 1200-Hz shriek. What is its wavelength if the speed of
sound is 345 m/s?

45. What frequency sound has a 0.10-m wavelength when
the speed of sound is 340 m/s?

46. Calculate the speed of sound on a day when a 1500-Hz
frequency has a wavelength of 0.221 m.

47. (a) What is the speed of sound in a medium where
a 100-kHz frequency produces a 5.96-cm wavelength? (b)
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Which substance in Table 17.1 is this likely to be?

48. Show that the speed of sound in 20.0°C air is

343 m/s, as claimed in the text.

49. Air temperature in the Sahara Desert can reach
56.0°C (about 134°F ). What is the speed of sound in air

at that temperature?

50. Dolphins make sounds in air and water. What is the
ratio of the wavelength of a sound in air to its wavelength
in seawater? Assume air temperature is 20.0°C.

51. A sonar echo returns to a submarine 1.20 s after being
emitted. What is the distance to the object creating the
echo? (Assume that the submarine is in the ocean, not in
fresh water.)

52. (a) If a submarine’s sonar can measure echo times with
a precision of 0.0100 s, what is the smallest difference in
distances it can detect? (Assume that the submarine is in
the ocean, not in fresh water.) (b) Discuss the limits this
time resolution imposes on the ability of the sonar system
to detect the size and shape of the object creating the echo.

53. Ultrasonic sound waves are often used in methods of
nondestructive testing. For example, this method can be
used to find structural faults in a steel I-beams used in
building. Consider a 10.00 meter long, steel I-beam with
a cross-section shown below. The weight of the I-beam is
3846.50 N. What would be the speed of sound through in
the I-beam? ⎛

⎝Ysteel = 200 GPa, βsteel = 159 GPa⎞
⎠ .

54. A physicist at a fireworks display times the lag
between seeing an explosion and hearing its sound, and
finds it to be 0.400 s. (a) How far away is the explosion if
air temperature is 24.0°C and if you neglect the time taken

for light to reach the physicist? (b) Calculate the distance to
the explosion taking the speed of light into account. Note
that this distance is negligibly greater.

55. During a 4th of July celebration, an M80 firework
explodes on the ground, producing a bright flash and a
loud bang. The air temperature of the night air is
TF = 90.00°F. Two observers see the flash and hear the

bang. The first observer notes the time between the flash
and the bang as 1.00 second. The second observer notes the
difference as 3.00 seconds. The line of sight between the
two observers meet at a right angle as shown below. What
is the distance Δx between the two observers?

56. The density of a sample of water is

ρ = 998.00 kg/m3 and the bulk modulus is

β = 2.15 GPa. What is the speed of sound through the

sample?

57. Suppose a bat uses sound echoes to locate its insect
prey, 3.00 m away. (See Figure 17.6.) (a) Calculate the
echo times for temperatures of 5.00°C and 35.0°C. (b)

What percent uncertainty does this cause for the bat in
locating the insect? (c) Discuss the significance of this
uncertainty and whether it could cause difficulties for the
bat. (In practice, the bat continues to use sound as it closes
in, eliminating most of any difficulties imposed by this and
other effects, such as motion of the prey.)

17.3 Sound Intensity

58. What is the intensity in watts per meter squared of a
85.0-dB sound?

59. The warning tag on a lawn mower states that it
produces noise at a level of 91.0 dB. What is this in watts
per meter squared?

60. A sound wave traveling in air has a pressure amplitude
of 0.5 Pa. What is the intensity of the wave?

61. What intensity level does the sound in the preceding
problem correspond to?
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62. What sound intensity level in dB is produced by

earphones that create an intensity of 4.00 × 10−2 W/m2 ?

63. What is the decibel level of a sound that is twice as
intense as a 90.0-dB sound? (b) What is the decibel level of
a sound that is one-fifth as intense as a 90.0-dB sound?

64. What is the intensity of a sound that has a level 7.00

dB lower than a 4.00 × 10−9 -W/m2 sound? (b) What

is the intensity of a sound that is 3.00 dB higher than a

4.00 × 10−9 -W/m2 sound?

65. People with good hearing can perceive sounds as low
as −8.00 dB at a frequency of 3000 Hz. What is the
intensity of this sound in watts per meter squared?

66. If a large housefly 3.0 m away from you makes a noise
of 40.0 dB, what is the noise level of 1000 flies at that
distance, assuming interference has a negligible effect?

67. Ten cars in a circle at a boom box competition produce
a 120-dB sound intensity level at the center of the circle.
What is the average sound intensity level produced there
by each stereo, assuming interference effects can be
neglected?

68. The amplitude of a sound wave is measured in terms
of its maximum gauge pressure. By what factor does the
amplitude of a sound wave increase if the sound intensity
level goes up by 40.0 dB?

69. If a sound intensity level of 0 dB at 1000 Hz
corresponds to a maximum gauge pressure (sound

amplitude) of 10−9 atm , what is the maximum gauge

pressure in a 60-dB sound? What is the maximum gauge
pressure in a 120-dB sound?

70. An 8-hour exposure to a sound intensity level of 90.0
dB may cause hearing damage. What energy in joules falls
on a 0.800-cm-diameter eardrum so exposed?

71. Sound is more effectively transmitted into a
stethoscope by direct contact rather than through the air,
and it is further intensified by being concentrated on the
smaller area of the eardrum. It is reasonable to assume
that sound is transmitted into a stethoscope 100 times as
effectively compared with transmission though the air.
What, then, is the gain in decibels produced by a

stethoscope that has a sound gathering area of 15.0 cm2 ,

and concentrates the sound onto two eardrums with a total

area of 0.900 cm2 with an efficiency of 40.0% ?

72. Loudspeakers can produce intense sounds with
surprisingly small energy input in spite of their low

efficiencies. Calculate the power input needed to produce
a 90.0-dB sound intensity level for a 12.0-cm-diameter
speaker that has an efficiency of 1.00% . (This value is the

sound intensity level right at the speaker.)

73. The factor of 10-12 in the range of intensities to which
the ear can respond, from threshold to that causing damage
after brief exposure, is truly remarkable. If you could
measure distances over the same range with a single
instrument and the smallest distance you could measure
was 1 mm, what would the largest be?

74. What are the closest frequencies to 500 Hz that an
average person can clearly distinguish as being different
in frequency from 500 Hz? The sounds are not present
simultaneously.

75. Can you tell that your roommate turned up the sound
on the TV if its average sound intensity level goes from 70
to 73 dB?

76. If a woman needs an amplification of 5.0 × 105

times the threshold intensity to enable her to hear at all
frequencies, what is her overall hearing loss in dB? Note
that smaller amplification is appropriate for more intense
sounds to avoid further damage to her hearing from levels
above 90 dB.

77. A person has a hearing threshold 10 dB above normal
at 100 Hz and 50 dB above normal at 4000 Hz. How much
more intense must a 100-Hz tone be than a 4000-Hz tone if
they are both barely audible to this person?

17.4 Normal Modes of a Standing Sound Wave

78. (a) What is the fundamental frequency of a 0.672-m-
long tube, open at both ends, on a day when the speed of
sound is 344 m/s? (b) What is the frequency of its second
harmonic?

79. What is the length of a tube that has a fundamental
frequency of 176 Hz and a first overtone of 352 Hz if the
speed of sound is 343 m/s?

80. The ear canal resonates like a tube closed at one
end. (See [link]Figure 17_03_HumEar[/link].) If ear canals
range in length from 1.80 to 2.60 cm in an average
population, what is the range of fundamental resonant
frequencies? Take air temperature to be 37.0°C, which is

the same as body temperature.

81. Calculate the first overtone in an ear canal, which
resonates like a 2.40-cm-long tube closed at one end, by
taking air temperature to be 37.0°C . Is the ear particularly

sensitive to such a frequency? (The resonances of the ear
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canal are complicated by its nonuniform shape, which we
shall ignore.)

82. A crude approximation of voice production is to
consider the breathing passages and mouth to be a
resonating tube closed at one end. (a) What is the
fundamental frequency if the tube is 0.240 m long, by
taking air temperature to be 37.0°C ? (b) What would

this frequency become if the person replaced the air with
helium? Assume the same temperature dependence for
helium as for air.

83. A 4.0-m-long pipe, open at one end and closed at
one end, is in a room where the temperature is T = 22°C.
A speaker capable of producing variable frequencies is
placed at the open end and is used to cause the tube to
resonate. (a) What is the wavelength and the frequency of
the fundamental frequency? (b) What is the frequency and
wavelength of the first overtone?

84. A 4.0-m-long pipe, open at both ends, is placed in
a room where the temperature is T = 25°C. A speaker

capable of producing variable frequencies is placed at the
open end and is used to cause the tube to resonate. (a) What
are the wavelength and the frequency of the fundamental
frequency? (b) What are the frequency and wavelength of
the first overtone?

85. A nylon guitar string is fixed between two lab posts
2.00 m apart. The string has a linear mass density of
µ = 7.20 g/m and is placed under a tension of 160.00 N.

The string is placed next to a tube, open at both ends, of
length L. The string is plucked and the tube resonates at the
n = 3 mode. The speed of sound is 343 m/s. What is the

length of the tube?

86. A 512-Hz tuning fork is struck and placed next to a
tube with a movable piston, creating a tube with a variable
length. The piston is slid down the pipe and resonance is
reached when the piston is 115.50 cm from the open end.
The next resonance is reached when the piston is 82.50 cm
from the open end. (a) What is the speed of sound in the
tube? (b) How far from the open end will the piston cause
the next mode of resonance?

87. Students in a physics lab are asked to find the length
of an air column in a tube closed at one end that has
a fundamental frequency of 256 Hz. They hold the tube
vertically and fill it with water to the top, then lower the
water while a 256-Hz tuning fork is rung and listen for
the first resonance. (a) What is the air temperature if the
resonance occurs for a length of 0.336 m? (b) At what
length will they observe the second resonance (first
overtone)?

17.5 Sources of Musical Sound

88. If a wind instrument, such as a tuba, has a fundamental
frequency of 32.0 Hz, what are its first three overtones? It
is closed at one end. (The overtones of a real tuba are more
complex than this example, because it is a tapered tube.)

89. What are the first three overtones of a bassoon that
has a fundamental frequency of 90.0 Hz? It is open at both
ends. (The overtones of a real bassoon are more complex
than this example, because its double reed makes it act
more like a tube closed at one end.)

90. How long must a flute be in order to have a
fundamental frequency of 262 Hz (this frequency
corresponds to middle C on the evenly tempered chromatic
scale) on a day when air temperature is 20.0°C ? It is open

at both ends.

91. What length should an oboe have to produce a
fundamental frequency of 110 Hz on a day when the speed
of sound is 343 m/s? It is open at both ends.

92. (a) Find the length of an organ pipe closed at one end
that produces a fundamental frequency of 256 Hz when
air temperature is 18.0°C . (b) What is its fundamental

frequency at 25.0°C ?

93. An organ pipe (L = 3.00 m) is closed at both ends.

Compute the wavelengths and frequencies of the first three
modes of resonance. Assume the speed of sound is
v = 343.00 m/s.

94. An organ pipe (L = 3.00 m) is closed at one end.

Compute the wavelengths and frequencies of the first three
modes of resonance. Assume the speed of sound is
v = 343.00 m/s.

95. A sound wave of a frequency of 2.00 kHz is produced
by a string oscillating in the n = 6 mode. The linear mass

density of the string is µ = 0.0065 kg/m and the length of

the string is 1.50 m. What is the tension in the string?

96. Consider the sound created by resonating the tube
shown below. The air temperature is TC = 30.00°C . What

are the wavelength, wave speed, and frequency of the
sound produced?
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97. A student holds an 80.00-cm lab pole one quarter of
the length from the end of the pole. The lab pole is made of
aluminum. The student strikes the lab pole with a hammer.
The pole resonates at the lowest possible frequency. What
is that frequency?

98. A string on the violin has a length of 24.00 cm and a
mass of 0.860 g. The fundamental frequency of the string is
1.00 kHz. (a) What is the speed of the wave on the string?
(b) What is the tension in the string?

99. By what fraction will the frequencies produced by a
wind instrument change when air temperature goes from
10.0°C to 30.0°C ? That is, find the ratio of the

frequencies at those temperatures.

17.6 Beats

100. What beat frequencies are present: (a) If the musical
notes A and C are played together (frequencies of 220 and
264 Hz)? (b) If D and F are played together (frequencies of
297 and 352 Hz)? (c) If all four are played together?

101. What beat frequencies result if a piano hammer hits
three strings that emit frequencies of 127.8, 128.1, and
128.3 Hz?

102. A piano tuner hears a beat every 2.00 s when
listening to a 264.0-Hz tuning fork and a single piano
string. What are the two possible frequencies of the string?

103. Two identical strings, of identical lengths of 2.00 m
and linear mass density of µ = 0.0065 kg/m, are fixed on

both ends. String A is under a tension of 120.00 N. String
B is under a tension of 130.00 N. They are each plucked
and produce sound at the n = 10 mode. What is the beat

frequency?

104. A piano tuner uses a 512-Hz tuning fork to tune a
piano. He strikes the fork and hits a key on the piano and
hears a beat frequency of 5 Hz. He tightens the string of
the piano, and repeats the procedure. Once again he hears a
beat frequency of 5 Hz. What happened?

105. A string with a linear mass density of
µ = 0.0062 kg/m is stretched between two posts 1.30 m

apart. The tension in the string is 150.00 N. The string
oscillates and produces a sound wave. A 1024-Hz tuning
fork is struck and the beat frequency between the two
sources is 52.83 Hz. What are the possible frequency and
wavelength of the wave on the string?

106. A car has two horns, one emitting a frequency of 199
Hz and the other emitting a frequency of 203 Hz. What beat
frequency do they produce?

107. The middle C hammer of a piano hits two strings,
producing beats of 1.50 Hz. One of the strings is tuned to
260.00 Hz. What frequencies could the other string have?

108. Two tuning forks having frequencies of 460 and 464
Hz are struck simultaneously. What average frequency will
you hear, and what will the beat frequency be?

109. Twin jet engines on an airplane are producing an
average sound frequency of 4100 Hz with a beat frequency
of 0.500 Hz. What are their individual frequencies?

110. Three adjacent keys on a piano (F, F-sharp, and G)
are struck simultaneously, producing frequencies of 349,
370, and 392 Hz. What beat frequencies are produced by
this discordant combination?

17.7 The Doppler Effect

111. (a) What frequency is received by a person watching
an oncoming ambulance moving at 110 km/h and emitting
a steady 800-Hz sound from its siren? The speed of sound
on this day is 345 m/s. (b) What frequency does she receive
after the ambulance has passed?

112. (a) At an air show a jet flies directly toward the stands
at a speed of 1200 km/h, emitting a frequency of 3500
Hz, on a day when the speed of sound is 342 m/s. What
frequency is received by the observers? (b) What frequency
do they receive as the plane flies directly away from them?

113. What frequency is received by a mouse just before
being dispatched by a hawk flying at it at 25.0 m/s and
emitting a screech of frequency 3500 Hz? Take the speed of
sound to be 331 m/s.

114. A spectator at a parade receives an 888-Hz tone from
an oncoming trumpeter who is playing an 880-Hz note.
At what speed is the musician approaching if the speed of
sound is 338 m/s?

115. A commuter train blows its 200-Hz horn as it
approaches a crossing. The speed of sound is 335 m/s. (a)
An observer waiting at the crossing receives a frequency of
208 Hz. What is the speed of the train? (b) What frequency
does the observer receive as the train moves away?

116. Can you perceive the shift in frequency produced
when you pull a tuning fork toward you at 10.0 m/s on a
day when the speed of sound is 344 m/s? To answer this
question, calculate the factor by which the frequency shifts
and see if it is greater than 0.300%.

117. Two eagles fly directly toward one another, the first
at 15.0 m/s and the second at 20.0 m/s. Both screech, the
first one emitting a frequency of 3200 Hz and the second
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one emitting a frequency of 3800 Hz. What frequencies do
they receive if the speed of sound is 330 m/s?

118. Student A runs down the hallway of the school at
a speed of vo = 5.00 m/s, carrying a ringing 1024.00-Hz

tuning fork toward a concrete wall. The speed of sound is
v = 343.00 m/s. Student B stands at rest at the wall. (a)

What is the frequency heard by student B? (b) What is the
beat frequency heard by student A?

119. An ambulance with a siren ⎛
⎝ f = 1.00kHz⎞

⎠ blaring is

approaching an accident scene. The ambulance is moving
at 70.00 mph. A nurse is approaching the scene from the
opposite direction, running at vo = 7.00 m/s. What

frequency does the nurse observe? Assume the speed of
sound is v = 343.00 m/s.

120. The frequency of the siren of an ambulance is 900
Hz and is approaching you. You are standing on a corner
and observe a frequency of 960 Hz. What is the speed
of the ambulance (in mph) if the speed of sound is
v = 340.00 m/s?

121. What is the minimum speed at which a source must
travel toward you for you to be able to hear that its
frequency is Doppler shifted? That is, what speed produces
a shift of 0.300% on a day when the speed of sound is 331

m/s?

17.8 Shock Waves

122. An airplane is flying at Mach 1.50 at an altitude
of 7500.00 meters, where the speed of sound is
v = 343.00 m/s. How far away from a stationary observer

will the plane be when the observer hears the sonic boom?

123. A jet flying at an altitude of 8.50 km has a speed of
Mach 2.00, where the speed of sound is v = 340.00 m/s.
How long after the jet is directly overhead, will a stationary
observer hear a sonic boom?

124. The shock wave off the front of a fighter jet has an
angle of θ = 70.00° . The jet is flying at 1200 km/h. What

is the speed of sound?

125. A plane is flying at Mach 1.2, and an observer on
the ground hears the sonic boom 15.00 seconds after the
plane is directly overhead. What is the altitude of the plane?
Assume the speed of sound is vw = 343.00 m/s.

126. A bullet is fired and moves at a speed of 1342 mph.
Assume the speed of sound is v = 340.00 m/s. What is the

angle of the shock wave produced?

127. A speaker is placed at the opening of a long
horizontal tube. The speaker oscillates at a frequency of f,
creating a sound wave that moves down the tube. The wave
moves through the tube at a speed of v = 340.00 m/s.
The sound wave is modeled with the wave function
s(x, t) = smax cos⎛

⎝kx − ωt + ϕ⎞
⎠ . At time t = 0.00 s , an

air molecule at x = 2.3 m is at the maximum displacement

of 6.34 nm. At the same time, another molecule at
x = 2.7 m has a displacement of 2.30 nm. What is the

wave function of the sound wave, that is, find the wave
number, angular frequency, and the initial phase shift?

128. An airplane moves at Mach 1.2 and produces a shock
wave. (a) What is the speed of the plane in meters per
second? (b) What is the angle that the shock wave moves?

ADDITIONAL PROBLEMS

129. A 0.80-m-long tube is opened at both ends. The
air temperature is 26°C. The air in the tube is oscillated

using a speaker attached to a signal generator. What are the
wavelengths and frequencies of first two modes of sound
waves that resonate in the tube?

130. A tube filled with water has a valve at the bottom
to allow the water to flow out of the tube. As the water
is emptied from the tube, the length L of the air column
changes. A 1024-Hz tuning fork is placed at the opening of
the tube. Water is removed from the tube until the n = 5
mode of a sound wave resonates. What is the length of
the air column if the temperature of the air in the room is
18°C?
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131. Consider the following figure. The length of the
string between the string vibrator and the pulley is
L = 1.00 m. The linear density of the string is

µ = 0.006 kg/m. The string vibrator can oscillate at any

frequency. The hanging mass is 2.00 kg. (a)What are the
wavelength and frequency of n = 6 mode? (b) The string

oscillates the air around the string. What is the wavelength
of the sound if the speed of the sound is vs = 343.00 m/s
?

132. Early Doppler shift experiments were conducted
using a band playing music on a train. A trumpet player on
a moving railroad flatcar plays a 320-Hz note. The sound
waves heard by a stationary observer on a train platform
hears a frequency of 350 Hz. What is the flatcar’s speed in
mph? The temperature of the air is TC = 22°C .

133. Two cars move toward one another, both sounding
their horns ⎛

⎝ fs = 800 Hz⎞
⎠ . Car A is moving at 65 mph and

Car B is at 75 mph. What is the beat frequency heard by
each driver? The air temperature is TC = 22.00°C .

134. Student A runs after Student B. Student A carries
a tuning fork ringing at 1024 Hz, and student B carries
a tuning fork ringing at 1000 Hz. Student A is running
at a speed of vA = 5.00 m/s and Student B is running at

vB = 6.00 m/s. What is the beat frequency heard by each

student? The speed of sound is v = 343.00 m/s.

135. Suppose that the sound level from a source is 75
dB and then drops to 52 dB, with a frequency of 600 Hz.
Determine the (a) initial and (b) final sound intensities and
the (c) initial and (d) final sound wave amplitudes. The
air temperature is TC = 24.00°C and the air density is

ρ = 1.184 kg/m3.

136. The Doppler shift for a Doppler radar is found by

f = fR
⎛
⎝

1 + v
c

1 − v
c

⎞
⎠ , where fR is the frequency of the radar,

f is the frequency observed by the radar, c is the speed
of light, and v is the speed of the target. What is the beat
frequency observed at the radar, assuming the speed of the
target is much slower than the speed of light?

137. A stationary observer hears a frequency of 1000.00
Hz as a source approaches and a frequency of 850.00 Hz as
a source departs. The source moves at a constant velocity
of 75 mph. What is the temperature of the air?

138. A flute plays a note with a frequency of 600 Hz. The
flute can be modeled as a pipe open at both ends, where
the flute player changes the length with his finger positions.
What is the length of the tube if this is the fundamental
frequency?

CHALLENGE PROBLEMS

139. Two sound speakers are separated by a distance d, each sounding a frequency f. An observer stands at one
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speaker and walks in a straight line a distance x,
perpendicular to the the two speakers, until he comes to the
first maximum intensity of sound. The speed of sound is v.
How far is he from the speaker?

140. Consider the beats shown below. This is a graph
of the gauge pressure versus time for the position
x = 0.00 m. The wave moves with a speed of

v = 343.00 m/s. (a) How many beats are there per

second? (b) How many times does the wave oscillate per
second? (c) Write a wave function for the gauge pressure as
a function of time.

141. Two speakers producing the same frequency of sound
are a distance of d apart. Consider an arc along a circle of
radius R, centered at the midpoint of the speakers, as shown
below. (a) At what angles will there be maxima? (b) At
what angle will there be minima?

142. A string has a length of 1.5 m, a linear mass density
µ = 0.008 kg/m, , and a tension of 120 N. If the air

temperature is T = 22°C, what should the length of a pipe

open at both ends for it to have the same frequency for the
n = 3 mode?

143. A string
⎛
⎝µ = 0.006kg

m , L = 1.50 m⎞
⎠ is fixed at

both ends and is under a tension of 155 N. It oscillates in the
n = 10 mode and produces sound. A tuning fork is ringing

nearby, producing a beat frequency of 23.76 Hz. (a) What is
the frequency of the sound from the string? (b) What is the
frequency of the tuning fork if the tuning fork frequency is
lower? (c) What should be the tension of the string for the
beat frequency to be zero?

144. A string has a linear mass density µ , a length L, and

a tension of FT , and oscillates in a mode n at a frequency

f. Find the ratio of
Δ f

f for a small change in tension.

145. A string has a linear mass density µ = 0.007 kg/m,
a length L = 0.70 m, a tension of FT = 110 N, and

oscillates in a mode n = 3 . (a) What is the frequency of

the oscillations? (b) Use the result in the preceding problem
to find the change in the frequency when the tension is
increased by 1.00% .

146. A speaker powered by a signal generator is used
to study resonance in a tube. The signal generator can
be adjusted from a frequency of 1000 Hz to 1800 Hz.
First, a 0.75-m-long tube, open at both ends, is studied.
The temperature in the room is TF = 85.00°F. (a) Which

normal modes of the pipe can be studied? What are the
frequencies and wavelengths? Next a cap is place on one
end of the 0.75-meter-long pipe. (b) Which normal modes
of the pipe can be studied? What are the frequencies and
wavelengths?

147. A string on the violin has a length of 23.00 cm and
a mass of 0.900 grams. The tension in the string 850.00
N. The temperature in the room is TC = 24.00°C. The

string is plucked and oscillates in the n = 9 mode. (a)

What is the speed of the wave on the string? (b) What is
the wavelength of the sounding wave produced? (c) What
is the frequency of the oscillating string? (d) What is the
frequency of the sound produced? (e) What is the
wavelength of the sound produced?
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