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Figure 2.1 A volcanic eruption releases tons of gas and dust into the atmosphere. Most of the gas is water vapor, but several
other gases are common, including greenhouse gases such as carbon dioxide and acidic pollutants such as sulfur dioxide.
However, the emission of volcanic gas is not all bad: Many geologists believe that in the earliest stages of Earth’s formation,
volcanic emissions formed the early atmosphere. (credit: modification of work by “Boaworm”/Wikimedia Commons)
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Introduction
Gases are literally all around us—the air that we breathe is a mixture of gases. Other gases include those that make breads
and cakes soft, those that make drinks fizzy, and those that burn to heat many homes. Engines and refrigerators depend on
the behaviors of gases, as we will see in later chapters.

As we discussed in the preceding chapter, the study of heat and temperature is part of an area of physics known as

thermodynamics, in which we require a system to be macroscopic, that is, to consist of a huge number (such as 1023 ) of

molecules. We begin by considering some macroscopic properties of gases: volume, pressure, and temperature. The simple
model of a hypothetical “ideal gas” describes these properties of a gas very accurately under many conditions. We move
from the ideal gas model to a more widely applicable approximation, called the Van der Waals model.

To understand gases even better, we must also look at them on the microscopic scale of molecules. In gases, the molecules
interact weakly, so the microscopic behavior of gases is relatively simple, and they serve as a good introduction to systems
of many molecules. The molecular model of gases is called the kinetic theory of gases and is one of the classic examples of
a molecular model that explains everyday behavior.
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2.1 | Molecular Model of an Ideal Gas

Learning Objectives

By the end of this section, you will be able to:

• Apply the ideal gas law to situations involving the pressure, volume, temperature, and the
number of molecules of a gas

• Use the unit of moles in relation to numbers of molecules, and molecular and macroscopic
masses

• Explain the ideal gas law in terms of moles rather than numbers of molecules

• Apply the van der Waals gas law to situations where the ideal gas law is inadequate

In this section, we explore the thermal behavior of gases. Our word “gas” comes from the Flemish word meaning “chaos,”
first used for vapors by the seventeenth-century chemist J. B. van Helmont. The term was more appropriate than he knew,
because gases consist of molecules moving and colliding with each other at random. This randomness makes the connection
between the microscopic and macroscopic domains simpler for gases than for liquids or solids.

How do gases differ from solids and liquids? Under ordinary conditions, such as those of the air around us, the difference
is that the molecules of gases are much farther apart than those of solids and liquids. Because the typical distances between
molecules are large compared to the size of a molecule, as illustrated in Figure 2.2, the forces between them are considered
negligible, except when they come into contact with each other during collisions. Also, at temperatures well above the
boiling temperature, the motion of molecules is fast, and the gases expand rapidly to occupy all of the accessible volume.
In contrast, in liquids and solids, molecules are closer together, and the behavior of molecules in liquids and solids is highly
constrained by the molecules’ interactions with one another. The macroscopic properties of such substances depend strongly
on the forces between the molecules, and since many molecules are interacting, the resulting “many-body problems” can be
extremely complicated (see Condensed Matter Physics (http://cnx.org/content/m58591/latest/) ).

Figure 2.2 Atoms and molecules in a gas are typically widely
separated. Because the forces between them are quite weak at
these distances, the properties of a gas depend more on the
number of atoms per unit volume and on temperature than on
the type of atom.

The Gas Laws
In the previous chapter, we saw one consequence of the large intermolecular spacing in gases: Gases are easily compressed.
Table 1.2 shows that gases have larger coefficients of volume expansion than either solids or liquids. These large
coefficients mean that gases expand and contract very rapidly with temperature changes. We also saw (in the section on
thermal expansion) that most gases expand at the same rate or have the same coefficient of volume expansion, β . This

raises a question: Why do all gases act in nearly the same way, when all the various liquids and solids have widely varying
expansion rates?

To study how the pressure, temperature, and volume of a gas relate to one another, consider what happens when you pump
air into a deflated car tire. The tire’s volume first increases in direct proportion to the amount of air injected, without much
increase in the tire pressure. Once the tire has expanded to nearly its full size, the tire’s walls limit its volume expansion.
If we continue to pump air into the tire, the pressure increases. When the car is driven and the tires flex, their temperature
increases, and therefore the pressure increases even further (Figure 2.3).
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Figure 2.3 (a) When air is pumped into a deflated tire, its volume first increases without much increase in pressure. (b) When
the tire is filled to a certain point, the tire walls resist further expansion, and the pressure increases with more air. (c) Once the
tire is inflated, its pressure increases with temperature.

Figure 2.4 shows data from the experiments of Robert Boyle (1627–1691), illustrating what is now called Boyle’s law:
At constant temperature and number of molecules, the absolute pressure of a gas and its volume are inversely proportional.
(Recall from Fluid Mechanics (http://cnx.org/content/m58624/latest/) that the absolute pressure is the true pressure
and the gauge pressure is the absolute pressure minus the ambient pressure, typically atmospheric pressure.) The graph in
Figure 2.4 displays this relationship as an inverse proportionality of volume to pressure.

Figure 2.4 Robert Boyle and his assistant found that volume and pressure are
inversely proportional. Here their data are plotted as V versus 1/p; the linearity of the
graph shows the inverse proportionality. The number shown as the volume is actually
the height in inches of air in a cylindrical glass tube. The actual volume was that
height multiplied by the cross-sectional area of the tube, which Boyle did not publish.
The data are from Boyle’s book A Defence of the Doctrine Touching the Spring and
Weight of the Air…, p. 60.[1]

Figure 2.5 shows experimental data illustrating what is called Charles’s law, after Jacques Charles (1746–1823). Charles’s
law states that at constant pressure and number of molecules, the volume of a gas is proportional to its absolute temperature.

1. http://bvpb.mcu.es/en/consulta/registro.cmd?id=406806
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Figure 2.5 Experimental data showing that at constant pressure, volume is
approximately proportional to temperature. The best-fit line passes approximately
through the origin.[2]

Similar is Amonton’s or Gay-Lussac’s law, which states that at constant volume and number of molecules, the pressure is
proportional to the temperature. That law is the basis of the constant-volume gas thermometer, discussed in the previous
chapter. (The histories of these laws and the appropriate credit for them are more complicated than can be discussed here.)

It is known experimentally that for gases at low density (such that their molecules occupy a negligible fraction of the
total volume) and at temperatures well above the boiling point, these proportionalities hold to a good approximation. Not
surprisingly, with the other quantities held constant, either pressure or volume is proportional to the number of molecules.
More surprisingly, when the proportionalities are combined into a single equation, the constant of proportionality is
independent of the composition of the gas. The resulting equation for all gases applies in the limit of low density and high
temperature; it’s the same for oxygen as for helium or uranium hexafluoride. A gas at that limit is called an ideal gas; it
obeys the ideal gas law, which is also called the equation of state of an ideal gas.

Ideal Gas Law

The ideal gas law states that

(2.1)pV = NkB T ,

where p is the absolute pressure of a gas, V is the volume it occupies, N is the number of molecules in the gas, and T is
its absolute temperature.

The constant kB is called the Boltzmann constant in honor of the Austrian physicist Ludwig Boltzmann (1844–1906) and

has the value

kB = 1.38 × 10−23 J/K.

The ideal gas law describes the behavior of any real gas when its density is low enough or its temperature high enough that
it is far from liquefaction. This encompasses many practical situations. In the next section, we’ll see why it’s independent
of the type of gas.

In many situations, the ideal gas law is applied to a sample of gas with a constant number of molecules; for instance, the
gas may be in a sealed container. If N is constant, then solving for N shows that pV /T is constant. We can write that fact in
a convenient form:

2. http://chemed.chem.purdue.edu/genchem/history/charles.html
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(2.2)p1 V1
T1

= p2 V2
T2

,

where the subscripts 1 and 2 refer to any two states of the gas at different times. Again, the temperature must be expressed
in kelvin and the pressure must be absolute pressure, which is the sum of gauge pressure and atmospheric pressure.

Example 2.1

Calculating Pressure Changes Due to Temperature Changes

Suppose your bicycle tire is fully inflated, with an absolute pressure of 7.00 × 105 Pa (a gauge pressure of just

under 90.0 lb/in.2 ) at a temperature of 18.0 °C. What is the pressure after its temperature has risen to 35.0 °C
on a hot day? Assume there are no appreciable leaks or changes in volume.

Strategy

The pressure in the tire is changing only because of changes in temperature. We know the initial pressure

p0 = 7.00 × 105 Pa, the initial temperature T0 = 18.0 °C, and the final temperature Tf = 35.0 °C. We

must find the final pressure pf. Since the number of molecules is constant, we can use the equation

pf Vf
Tf

= p0 V0
T0

.

Since the volume is constant, Vf and V0 are the same and they divide out. Therefore,

pf
Tf

= p0
T0

.

We can then rearrange this to solve for pf :

pf = p0
Tf
T0

,

where the temperature must be in kelvin.

Solution
1. Convert temperatures from degrees Celsius to kelvin

T0 = (18.0 + 273)K = 291 K,

Tf = (35.0 + 273)K = 308 K.
2. Substitute the known values into the equation,

pf = p0
Tf
T0

= 7.00 × 105 Pa ⎛
⎝
308 K
291 K

⎞
⎠ = 7.41 × 105 Pa.

Significance

The final temperature is about 6% greater than the original temperature, so the final pressure is about 6% greater

as well. Note that absolute pressure (see Fluid Mechanics (http://cnx.org/content/m58624/latest/) ) and
absolute temperature (see Temperature and Heat) must be used in the ideal gas law.
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Example 2.2

Calculating the Number of Molecules in a Cubic Meter of Gas

How many molecules are in a typical object, such as gas in a tire or water in a glass? This calculation can give
us an idea of how large N typically is. Let’s calculate the number of molecules in the air that a typical healthy
young adult inhales in one breath, with a volume of 500 mL, at standard temperature and pressure (STP), which
is defined as 0 ºC and atmospheric pressure. (Our young adult is apparently outside in winter.)

Strategy

Because pressure, volume, and temperature are all specified, we can use the ideal gas law, pV = NkB T , to find

N.

Solution
1. Identify the knowns.

T = 0 °C = 273 K, p = 1.01 × 105 Pa, V = 500 mL = 5 × 10−4 m3, kB = 1.38 × 10−23 J/K
2. Substitute the known values into the equation and solve for N.

N = pV
kB T = (1.01 × 105 Pa) (5 × 10−4 m3)

(1.38 × 10−23 J/K) (273 K)
= 1.34 × 1022 molecules

Significance

N is huge, even in small volumes. For example, 1 cm3 of a gas at STP contains 2.68 × 1019 molecules. Once

again, note that our result for N is the same for all types of gases, including mixtures.

As we observed in the chapter on fluid mechanics, pascals are N/m2 , so Pa · m3 = N · m = J. Thus, our result

for N is dimensionless, a pure number that could be obtained by counting (in principle) rather than measuring.
As it is the number of molecules, we put “molecules” after the number, keeping in mind that it is an aid to
communication rather than a unit.

Moles and Avogadro’s Number
It is often convenient to measure the amount of substance with a unit on a more human scale than molecules. The SI unit for
this purpose was developed by the Italian scientist Amedeo Avogadro (1776–1856). (He worked from the hypothesis that
equal volumes of gas at equal pressure and temperature contain equal numbers of molecules, independent of the type of gas.
As mentioned above, this hypothesis has been confirmed when the ideal gas approximation applies.) A mole (abbreviated
mol) is defined as the amount of any substance that contains as many molecules as there are atoms in exactly 12 grams
(0.012 kg) of carbon-12. (Technically, we should say “formula units,” not “molecules,” but this distinction is irrelevant for
our purposes.) The number of molecules in one mole is called Avogadro’s number (NA), and the value of Avogadro’s

number is now known to be

NA = 6.02 × 1023 mol−1.

We can now write N = NA n , where n represents the number of moles of a substance.

Avogadro’s number relates the mass of an amount of substance in grams to the number of protons and neutrons in an atom
or molecule (12 for a carbon-12 atom), which roughly determine its mass. It’s natural to define a unit of mass such that the
mass of an atom is approximately equal to its number of neutrons and protons. The unit of that kind accepted for use with
the SI is the unified atomic mass unit (u), also called the dalton. Specifically, a carbon-12 atom has a mass of exactly 12
u, so that its molar mass M in grams per mole is numerically equal to the mass of one carbon-12 atom in u. That equality
holds for any substance. In other words, NA is not only the conversion from numbers of molecules to moles, but it is also

the conversion from u to grams: 6.02 × 1023 u = 1 g. See Figure 2.6.
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2.1

2.2

Figure 2.6 How big is a mole? On a macroscopic level, Avogadro’s number of table tennis balls
would cover Earth to a depth of about 40 km.

Now letting ms stand for the mass of a sample of a substance, we have ms = nM. Letting m stand for the mass of a

molecule, we have M = NA m.

Check Your Understanding The recommended daily amount of vitamin B3 or niacin, C6 NH5 O2,

for women who are not pregnant or nursing, is 14 mg. Find the number of molecules of niacin in that amount.

Check Your Understanding The density of air in a classroom (p = 1.00 atm and T = 20 °C) is

1.28 kg/m3 . At what pressure is the density 0.600 kg/m3 if the temperature is kept constant?

The Ideal Gas Law Restated using Moles
A very common expression of the ideal gas law uses the number of moles in a sample, n, rather than the number of
molecules, N. We start from the ideal gas law,

pV = NkB T ,

and multiply and divide the right-hand side of the equation by Avogadro’s number NA. This gives us

pV = N
NA

NA kB T .

Note that n = N/NA is the number of moles. We define the universal gas constant as R = NA kB, and obtain the ideal

gas law in terms of moles.

Ideal Gas Law (in terms of moles)

In terms of number of moles n, the ideal gas law is written as

(2.3)pV = nRT .

In SI units,

R = NA kB = ⎛
⎝6.02 × 1023 mol−1⎞

⎠
⎛
⎝1.38 × 10−23 J

K
⎞
⎠ = 8.31 J

mol · K.

In other units,

R = 1.99 cal
mol · K = 0.0821 L · atm

mol · K.

You can use whichever value of R is most convenient for a particular problem.
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2.3

Example 2.3

Density of Air at STP and in a Hot Air Balloon

Calculate the density of dry air (a) under standard conditions and (b) in a hot air balloon at a temperature of
120 ºC . Dry air is approximately 78% N2, 21% O2, and 1% Ar .

Strategy and Solution
a. We are asked to find the density, or mass per cubic meter. We can begin by finding the molar mass. If we

have a hundred molecules, of which 78 are nitrogen, 21 are oxygen, and 1 is argon, the average molecular

mass is
78 mN2

+ 21 mO2
+ mAr

100 , or the mass of each constituent multiplied by its percentage. The

same applies to the molar mass, which therefore is

M = 0.78 MN2
+ 0.21 MO2

+ 0.01 MAr = 29.0 g/mol.

Now we can find the number of moles per cubic meter. We use the ideal gas law in terms of moles,

pV = nRT , with p = 1.00 atm , T = 273 K , V = 1 m3 , and R = 8.31 J/mol · K . The most

convenient choice for R in this case is R = 8.31 J/mol · K because the known quantities are in SI units:

n = pV
RT = (1.01 × 105 Pa) (1 m3)

(8.31 J/mol · K) (273 K) = 44.5 mol.

Then, the mass ms of that air is

ms = nM = (44.5 mol)(29.0 g/mol) = 1290 g = 1.29 kg.

Finally the density of air at STP is

ρ = ms
V = 1.29 kg

1 m3 = 1.29 kg/m3.

b. The air pressure inside the balloon is still 1 atm because the bottom of the balloon is open to the
atmosphere. The calculation is the same except that we use a temperature of 120 ºC , which is 393 K.

We can repeat the calculation in (a), or simply observe that the density is proportional to the number of
moles, which is inversely proportional to the temperature. Then using the subscripts 1 for air at STP and
2 for the hot air, we have

ρ2 = T1
T2

ρ1 = 273 K
393 K(1.29 kg/m3) = 0.896 kg/m3.

Significance

Using the methods of Archimedes’ Principle and Buoyancy (http://cnx.org/content/m58356/latest/)

, we can find that the net force on 2200 m3 of air at 120 ºC is

Fb − Fg = ρatmosphere Vg − ρhot air Vg = 8.49 × 103 N, or enough to lift about 867 kg. The mass density and

molar density of air at STP, found above, are often useful numbers. From the molar density, we can easily
determine another useful number, the volume of a mole of any ideal gas at STP, which is 22.4 L.

Check Your Understanding Liquids and solids have densities on the order of 1000 times greater than
gases. Explain how this implies that the distances between molecules in gases are on the order of 10 times
greater than the size of their molecules.

The ideal gas law is closely related to energy: The units on both sides of the equation are joules. The right-hand side of
the ideal gas law equation is NkB T . This term is roughly the total translational kinetic energy (which, when discussing

gases, refers to the energy of translation of a molecule, not that of vibration of its atoms or rotation) of N molecules at
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an absolute temperature T, as we will see formally in the next section. The left-hand side of the ideal gas law equation is
pV. As mentioned in the example on the number of molecules in an ideal gas, pressure multiplied by volume has units of
energy. The energy of a gas can be changed when the gas does work as it increases in volume, something we explored in
the preceding chapter, and the amount of work is related to the pressure. This is the process that occurs in gasoline or steam
engines and turbines, as we’ll see in the next chapter.

Problem-Solving Strategy: The Ideal Gas Law

Step 1. Examine the situation to determine that an ideal gas is involved. Most gases are nearly ideal unless they are
close to the boiling point or at pressures far above atmospheric pressure.

Step 2. Make a list of what quantities are given or can be inferred from the problem as stated (identify the known
quantities).

Step 3. Identify exactly what needs to be determined in the problem (identify the unknown quantities). A written list
is useful.

Step 4. Determine whether the number of molecules or the number of moles is known or asked for to decide whether to
use the ideal gas law as pV = NkB T , where N is the number of molecules, or pV = nRT , where n is the number

of moles.

Step 5. Convert known values into proper SI units (K for temperature, Pa for pressure, m3 for volume, molecules for

N, and moles for n). If the units of the knowns are consistent with one of the non-SI values of R, you can leave them in
those units. Be sure to use absolute temperature and absolute pressure.

Step 6. Solve the ideal gas law for the quantity to be determined (the unknown quantity). You may need to take a ratio
of final states to initial states to eliminate the unknown quantities that are kept fixed.

Step 7. Substitute the known quantities, along with their units, into the appropriate equation and obtain numerical
solutions complete with units.

Step 8. Check the answer to see if it is reasonable: Does it make sense?

The Van der Waals Equation of State
We have repeatedly noted that the ideal gas law is an approximation. How can it be improved upon? The van der Waals
equation of state (named after the Dutch physicist Johannes van der Waals, 1837−1923) improves it by taking into account
two factors. First, the attractive forces between molecules, which are stronger at higher density and reduce the pressure,
are taken into account by adding to the pressure a term equal to the square of the molar density multiplied by a positive
coefficient a. Second, the volume of the molecules is represented by a positive constant b, which can be thought of as the
volume of a mole of molecules. This is subtracted from the total volume to give the remaining volume that the molecules
can move in. The constants a and b are determined experimentally for each gas. The resulting equation is

(2.4)⎡

⎣
⎢p + a⎛

⎝
n
V

⎞
⎠
2⎤

⎦
⎥(V − nb) = nRT .

In the limit of low density (small n), the a and b terms are negligible, and we have the ideal gas law, as we should for low
density. On the other hand, if V − nb is small, meaning that the molecules are very close together, the pressure must be

higher to give the same nRT, as we would expect in the situation of a highly compressed gas. However, the increase in

pressure is less than that argument would suggest, because at high density the (n/V)2 term is significant. Since it’s positive,

it causes a lower pressure to give the same nRT.

The van der Waals equation of state works well for most gases under a wide variety of conditions. As we’ll see in the next
module, it even predicts the gas-liquid transition.

pV Diagrams
We can examine aspects of the behavior of a substance by plotting a pV diagram, which is a graph of pressure versus
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volume. When the substance behaves like an ideal gas, the ideal gas law pV = nRT describes the relationship between its

pressure and volume. On a pV diagram, it’s common to plot an isotherm, which is a curve showing p as a function of V with
the number of molecules and the temperature fixed. Then, for an ideal gas, pV = constant. For example, the volume of

the gas decreases as the pressure increases. The resulting graph is a hyperbola.

However, if we assume the van der Waals equation of state, the isotherms become more interesting, as shown in Figure 2.7.
At high temperatures, the curves are approximately hyperbolas, representing approximately ideal behavior at various fixed
temperatures. At lower temperatures, the curves look less and less like hyperbolas—that is, the gas is not behaving ideally.
There is a critical temperature Tc at which the curve has a point with zero slope. Below that temperature, the curves do

not decrease monotonically; instead, they each have a “hump,” meaning that for a certain range of volume, increasing the
volume increases the pressure.

Figure 2.7 pV diagram for a Van der Waals gas at various temperatures. The red curves
are calculated at temperatures above the critical temperature and the blue curves at
temperatures below it. The blue curves have an oscillation in which volume (V) increases
with increasing temperature (T), an impossible situation, so they must be corrected as in
Figure 2.8. (credit: “Eman”/Wikimedia Commons)

Such behavior would be completely unphysical. Instead, the curves are understood as describing a liquid-gas phase
transition. The oscillating part of the curve is replaced by a horizontal line, showing that as the volume increases at constant
temperature, the pressure stays constant. That behavior corresponds to boiling and condensation; when a substance is at its
boiling temperature for a particular pressure, it can increase in volume as some of the liquid turns to gas, or decrease as
some of the gas turns to liquid, without any change in temperature or pressure.

Figure 2.8 shows similar isotherms that are more realistic than those based on the van der Waals equation. The steep parts
of the curves to the left of the transition region show the liquid phase, which is almost incompressible—a slight decrease in
volume requires a large increase in pressure. The flat parts show the liquid-gas transition; the blue regions that they define
represent combinations of pressure and volume where liquid and gas can coexist.
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Figure 2.8 pV diagrams. (a) Each curve (isotherm) represents the relationship between p and V at a fixed temperature; the
upper curves are at higher temperatures. The lower curves are not hyperbolas because the gas is no longer an ideal gas. (b) An
expanded portion of the pV diagram for low temperatures, where the phase can change from a gas to a liquid. The term “vapor”
refers to the gas phase when it exists at a temperature below the boiling temperature.

The isotherms above Tc do not go through the liquid-gas transition. Therefore, liquid cannot exist above that temperature,

which is the critical temperature (described in the chapter on temperature and heat). At sufficiently low pressure above that
temperature, the gas has the density of a liquid but will not condense; the gas is said to be supercritical. At higher pressure,
it is solid. Carbon dioxide, for example, has no liquid phase at a temperature above 31.0 ºC . The critical pressure is the

maximum pressure at which the liquid can exist. The point on the pV diagram at the critical pressure and temperature is
the critical point (which you learned about in the chapter on temperature and heat). Table 2.1 lists representative critical
temperatures and pressures.

Substance Critical temperature Critical pressure

K °C Pa atm

Water 647.4 374.3 22.12 × 106 219.0

Sulfur dioxide 430.7 157.6 7.88 × 106 78.0

Ammonia 405.5 132.4 11.28 × 106 111.7

Carbon dioxide 304.2 31.1 7.39 × 106 73.2

Oxygen 154.8 –118.4 5.08 × 106 50.3

Nitrogen 126.2 –146.9 3.39 × 106 33.6

Hydrogen 33.3 –239.9 1.30 × 106 12.9

Helium 5.3 –267.9 0.229 × 106 2.27

Table 2.1 Critical Temperatures and Pressures for Various
Substances
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2.2 | Pressure, Temperature, and RMS Speed

Learning Objectives

By the end of this section, you will be able to:

• Explain the relations between microscopic and macroscopic quantities in a gas

• Solve problems involving mixtures of gases

• Solve problems involving the distance and time between a gas molecule’s collisions

We have examined pressure and temperature based on their macroscopic definitions. Pressure is the force divided by the
area on which the force is exerted, and temperature is measured with a thermometer. We can gain a better understanding of
pressure and temperature from the kinetic theory of gases, the theory that relates the macroscopic properties of gases to the
motion of the molecules they consist of. First, we make two assumptions about molecules in an ideal gas.

1. There is a very large number N of molecules, all identical and each having mass m.

2. The molecules obey Newton’s laws and are in continuous motion, which is random and isotropic, that is, the same
in all directions.

To derive the ideal gas law and the connection between microscopic quantities such as the energy of a typical molecule and
macroscopic quantities such as temperature, we analyze a sample of an ideal gas in a rigid container, about which we make
two further assumptions:

3. The molecules are much smaller than the average distance between them, so their total volume is much less than
that of their container (which has volume V). In other words, we take the Van der Waals constant b, the volume of a
mole of gas molecules, to be negligible compared to the volume of a mole of gas in the container.

4. The molecules make perfectly elastic collisions with the walls of the container and with each other. Other forces
on them, including gravity and the attractions represented by the Van der Waals constant a, are negligible (as is
necessary for the assumption of isotropy).

The collisions between molecules do not appear in the derivation of the ideal gas law. They do not disturb the derivation
either, since collisions between molecules moving with random velocities give new random velocities. Furthermore, if the
velocities of gas molecules in a container are initially not random and isotropic, molecular collisions are what make them
random and isotropic.

We make still further assumptions that simplify the calculations but do not affect the result. First, we let the container be a
rectangular box. Second, we begin by considering monatomic gases, those whose molecules consist of single atoms, such
as helium. Then, we can assume that the atoms have no energy except their translational kinetic energy; for instance, they
have neither rotational nor vibrational energy. (Later, we discuss the validity of this assumption for real monatomic gases
and dispense with it to consider diatomic and polyatomic gases.)

Figure 2.9 shows a collision of a gas molecule with the wall of a container, so that it exerts a force on the wall (by
Newton’s third law). These collisions are the source of pressure in a gas. As the number of molecules increases, the number
of collisions, and thus the pressure, increases. Similarly, if the average velocity of the molecules is higher, the gas pressure
is higher.
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Figure 2.9 When a molecule collides with a rigid wall, the
component of its momentum perpendicular to the wall is
reversed. A force is thus exerted on the wall, creating pressure.

In a sample of gas in a container, the randomness of the molecular motion causes the number of collisions of molecules
with any part of the wall in a given time to fluctuate. However, because a huge number of molecules collide with the wall
in a short time, the number of collisions on the scales of time and space we measure fluctuates by only a tiny, usually
unobservable fraction from the average. We can compare this situation to that of a casino, where the outcomes of the bets
are random and the casino’s takings fluctuate by the minute and the hour. However, over long times such as a year, the
casino’s takings are very close to the averages expected from the odds. A tank of gas has enormously more molecules than
a casino has bettors in a year, and the molecules make enormously more collisions in a second than a casino has bets.

A calculation of the average force exerted by molecules on the walls of the box leads us to the ideal gas law and to the
connection between temperature and molecular kinetic energy. (In fact, we will take two averages: one over time to get
the average force exerted by one molecule with a given velocity, and then another average over molecules with different
velocities.) This approach was developed by Daniel Bernoulli (1700–1782), who is best known in physics for his work on
fluid flow (hydrodynamics). Remarkably, Bernoulli did this work before Dalton established the view of matter as consisting
of atoms.

Figure 2.10 shows a container full of gas and an expanded view of an elastic collision of a gas molecule with a wall of
the container, broken down into components. We have assumed that a molecule is small compared with the separation of
molecules in the gas, and that its interaction with other molecules can be ignored. Under these conditions, the ideal gas law
is experimentally valid. Because we have also assumed the wall is rigid and the particles are points, the collision is elastic
(by conservation of energy—there’s nowhere for a particle’s kinetic energy to go). Therefore, the molecule’s kinetic energy
remains constant, and hence, its speed and the magnitude of its momentum remain constant as well. This assumption is not
always valid, but the results in the rest of this module are also obtained in models that let the molecules exchange energy
and momentum with the wall.
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Figure 2.10 Gas in a box exerts an outward pressure on its
walls. A molecule colliding with a rigid wall has its velocity and
momentum in the x-direction reversed. This direction is
perpendicular to the wall. The components of its velocity
momentum in the y- and z-directions are not changed, which
means there is no force parallel to the wall.

If the molecule’s velocity changes in the x-direction, its momentum changes from −mvx to +mvx. Thus, its change in

momentum is Δmv = + mvx − (−mvx) = 2mvx. According to the impulse-momentum theorem given in the chapter on

linear momentum and collisions, the force exerted on the ith molecule, where i labels the molecules from 1 to N, is given by

Fi = Δpi
Δt = 2mvix

Δt .

(In this equation alone, p represents momentum, not pressure.) There is no force between the wall and the molecule except
while the molecule is touching the wall. During the short time of the collision, the force between the molecule and wall
is relatively large, but that is not the force we are looking for. We are looking for the average force, so we take Δt to be

the average time between collisions of the given molecule with this wall, which is the time in which we expect to find one
collision. Let l represent the length of the box in the x-direction. Then Δt is the time the molecule would take to go across

the box and back, a distance 2l, at a speed of vx. Thus Δt = 2l/vx, and the expression for the force becomes

Fi = 2mvix
2l/vix

=
mvix

2

l .

This force is due to one molecule. To find the total force on the wall, F, we need to add the contributions of all N molecules:

F = ∑
i = 1

N
Fi = ∑

i = 1

N mvix
2

l = m
l ∑

i = 1

N
vix

2 .

We now use the definition of the average, which we denote with a bar, to find the force:

F = N m
l

⎛

⎝
⎜ 1
N ∑

i = 1

N
vix

2
⎞

⎠
⎟ = N mvx

2
–

l .
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We want the force in terms of the speed v, rather than the x-component of the velocity. Note that the total velocity squared
is the sum of the squares of its components, so that

v2
–

= vx
2

–
+ vy

2
–

+ vz
2

–
.

With the assumption of isotropy, the three averages on the right side are equal, so

v2
–

= 3vix
2
–

.

Substituting this into the expression for F gives

F = N mv2
–

3l .

The pressure is F/A, so we obtain

p = F
A = N mv2

–

3Al = Nmv2
–

3V ,

where we used V = Al for the volume. This gives the important result

(2.5)pV = 1
3 Nmv2

–
.

Combining this equation with pV = NkB T gives

1
3 Nmv2

–
= NkB T .

We can get the average kinetic energy of a molecule, 1
2 mv2

–
, from the left-hand side of the equation by dividing out N and

multiplying by 3/2.

Average Kinetic Energy per Molecule

The average kinetic energy of a molecule is directly proportional to its absolute temperature:

(2.6)K– = 1
2 mv2

–
= 3

2 kB T .

The equation K– = 3
2 kB T is the average kinetic energy per molecule. Note in particular that nothing in this equation

depends on the molecular mass (or any other property) of the gas, the pressure, or anything but the temperature. If samples
of helium and xenon gas, with very different molecular masses, are at the same temperature, the molecules have the same
average kinetic energy.

The internal energy of a thermodynamic system is the sum of the mechanical energies of all of the molecules in it. We can
now give an equation for the internal energy of a monatomic ideal gas. In such a gas, the molecules’ only energy is their

translational kinetic energy. Therefore, denoting the internal energy by Eint, we simply have Eint = NK–, or

(2.7)Eint = 3
2 NkB T .

Often we would like to use this equation in terms of moles:

Eint = 3
2 nRT .
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We can solve K– = 1
2 mv2

–
= 3

2 kB T for a typical speed of a molecule in an ideal gas in terms of temperature to determine

what is known as the root-mean-square (rms) speed of a molecule.

RMS Speed of a Molecule

The root-mean-square (rms) speed of a molecule, or the square root of the average of the square of the speed v2
–

, is

(2.8)
vrms = v2

–
= 3kB T

m .

The rms speed is not the average or the most likely speed of molecules, as we will see in Distribution of Molecular
Speeds, but it provides an easily calculated estimate of the molecules’ speed that is related to their kinetic energy. Again
we can write this equation in terms of the gas constant R and the molar mass M in kg/mol:

(2.9)vrms = 3 RT
M .

We digress for a moment to answer a question that may have occurred to you: When we apply the model to atoms instead of
theoretical point particles, does rotational kinetic energy change our results? To answer this question, we have to appeal to
quantum mechanics. In quantum mechanics, rotational kinetic energy cannot take on just any value; it’s limited to a discrete
set of values, and the smallest value is inversely proportional to the rotational inertia. The rotational inertia of an atom is

tiny because almost all of its mass is in the nucleus, which typically has a radius less than 10−14 m . Thus the minimum

rotational energy of an atom is much more than 1
2 kB T for any attainable temperature, and the energy available is not

enough to make an atom rotate. We will return to this point when discussing diatomic and polyatomic gases in the next
section.

Example 2.4

Calculating Kinetic Energy and Speed of a Gas Molecule

(a) What is the average kinetic energy of a gas molecule at 20.0 ºC (room temperature)? (b) Find the rms speed

of a nitrogen molecule ⎛
⎝N2

⎞
⎠ at this temperature.

Strategy

(a) The known in the equation for the average kinetic energy is the temperature:

K– = 1
2 mv2

–
= 3

2kB T .

Before substituting values into this equation, we must convert the given temperature into kelvin:
T = (20.0 + 273) K = 293 K. We can find the rms speed of a nitrogen molecule by using the equation

vrms = v2
–

= 3kB T
m ,

but we must first find the mass of a nitrogen molecule. Obtaining the molar mass of nitrogen N2 from the

periodic table, we find

m = M
NA

= 2 (14.0067) × 10−3 kg/mol)
6.02 × 1023 mol-1 = 4.65 × 10−26 kg.

Solution
a. The temperature alone is sufficient for us to find the average translational kinetic energy. Substituting the

temperature into the translational kinetic energy equation gives
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K– = 3
2 kB T = 3

2(1.38 × 10−23 J/K)(293 K) = 6.07 × 10−21 J.

b. Substituting this mass and the value for kB into the equation for vrms yields

vrms = 3kB T
m = 3(1.38 × 10−23 J/K)(293 K)

4.65 × 10−26 kg
= 511 m/s.

Significance

Note that the average kinetic energy of the molecule is independent of the type of molecule. The average
translational kinetic energy depends only on absolute temperature. The kinetic energy is very small compared to
macroscopic energies, so that we do not feel when an air molecule is hitting our skin. On the other hand, it is
much greater than the typical difference in gravitational potential energy when a molecule moves from, say, the
top to the bottom of a room, so our neglect of gravitation is justified in typical real-world situations. The rms
speed of the nitrogen molecule is surprisingly large. These large molecular velocities do not yield macroscopic
movement of air, since the molecules move in all directions with equal likelihood. The mean free path (the
distance a molecule moves on average between collisions, discussed a bit later in this section) of molecules in air
is very small, so the molecules move rapidly but do not get very far in a second. The high value for rms speed
is reflected in the speed of sound, which is about 340 m/s at room temperature. The higher the rms speed of
air molecules, the faster sound vibrations can be transferred through the air. The speed of sound increases with
temperature and is greater in gases with small molecular masses, such as helium (see Figure 2.11).

Figure 2.11 (a) In an ordinary gas, so many molecules move so fast that they collide
billions of times every second. (b) Individual molecules do not move very far in a
small amount of time, but disturbances like sound waves are transmitted at speeds
related to the molecular speeds.

Example 2.5

Calculating Temperature: Escape Velocity of Helium Atoms

To escape Earth’s gravity, an object near the top of the atmosphere (at an altitude of 100 km) must travel away
from Earth at 11.1 km/s. This speed is called the escape velocity. At what temperature would helium atoms have
an rms speed equal to the escape velocity?

Strategy

Identify the knowns and unknowns and determine which equations to use to solve the problem.

Solution
1. Identify the knowns: v is the escape velocity, 11.1 km/s.
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2. Identify the unknowns: We need to solve for temperature, T. We also need to solve for the mass m of the
helium atom.

3. Determine which equations are needed.

◦ To get the mass m of the helium atom, we can use information from the periodic table:

m = M
NA

.

◦ To solve for temperature T, we can rearrange

1
2 mv2

–
= 3

2 kB T

to yield

T = mv2
–

3kB
.

4. Substitute the known values into the equations and solve for the unknowns,

m = M
NA

= 4.0026 × 10−3 kg/mol
6.02 × 1023 mol

= 6.65 × 10−27 kg

and

T =
(6.65 × 10−27 kg⎞

⎠
⎛
⎝11.1 × 103 m/s⎞

⎠
2

3 (1.38 × 10−23 J/K)
= 1.98 × 104 K.

Significance

This temperature is much higher than atmospheric temperature, which is approximately 250 K
(−25 °C or − 10 °F⎞

⎠ at high elevation. Very few helium atoms are left in the atmosphere, but many were present

when the atmosphere was formed, and more are always being created by radioactive decay (see the chapter on
nuclear physics). The reason for the loss of helium atoms is that a small number of helium atoms have speeds
higher than Earth’s escape velocity even at normal temperatures. The speed of a helium atom changes from one
collision to the next, so that at any instant, there is a small but nonzero chance that the atom’s speed is greater than
the escape velocity. The chance is high enough that over the lifetime of Earth, almost all the helium atoms that
have been in the atmosphere have reached escape velocity at high altitudes and escaped from Earth’s gravitational
pull. Heavier molecules, such as oxygen, nitrogen, and water, have smaller rms speeds, and so it is much less
likely that any of them will have speeds greater than the escape velocity. In fact, the likelihood is so small that
billions of years are required to lose significant amounts of heavier molecules from the atmosphere. Figure 2.12
shows the effect of a lack of an atmosphere on the Moon. Because the gravitational pull of the Moon is much
weaker, it has lost almost its entire atmosphere. The atmospheres of Earth and other bodies are compared in this
chapter’s exercises.
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2.4

Figure 2.12 This photograph of Apollo 17 Commander
Eugene Cernan driving the lunar rover on the Moon in 1972
looks as though it was taken at night with a large spotlight. In
fact, the light is coming from the Sun. Because the acceleration
due to gravity on the Moon is so low (about 1/6 that of Earth),
the Moon’s escape velocity is much smaller. As a result, gas
molecules escape very easily from the Moon, leaving it with
virtually no atmosphere. Even during the daytime, the sky is
black because there is no gas to scatter sunlight. (credit:
Harrison H. Schmitt/NASA)

Check Your Understanding If you consider a very small object, such as a grain of pollen, in a gas, then
the number of molecules striking its surface would also be relatively small. Would you expect the grain of
pollen to experience any fluctuations in pressure due to statistical fluctuations in the number of gas molecules
striking it in a given amount of time?

Vapor Pressure, Partial Pressure, and Dalton’s Law
The pressure a gas would create if it occupied the total volume available is called the gas’s partial pressure. If two or more
gases are mixed, they will come to thermal equilibrium as a result of collisions between molecules; the process is analogous
to heat conduction as described in the chapter on temperature and heat. As we have seen from kinetic theory, when the
gases have the same temperature, their molecules have the same average kinetic energy. Thus, each gas obeys the ideal
gas law separately and exerts the same pressure on the walls of a container that it would if it were alone. Therefore, in a
mixture of gases, the total pressure is the sum of partial pressures of the component gases, assuming ideal gas behavior and
no chemical reactions between the components. This law is known as Dalton’s law of partial pressures, after the English
scientist John Dalton (1766–1844) who proposed it. Dalton’s law is consistent with the fact that pressures add according to
Pascal’s principle.

In a mixture of ideal gases in thermal equilibrium, the number of molecules of each gas is proportional to its partial pressure.
This result follows from applying the ideal gas law to each in the form p/n = RT /V . Because the right-hand side is the

same for any gas at a given temperature in a container of a given volume, the left-hand side is the same as well.

• Partial pressure is the pressure a gas would create if it existed alone.

• Dalton’s law states that the total pressure is the sum of the partial pressures of all of the gases present.

• For any two gases (labeled 1 and 2) in equilibrium in a container,
p1
n1

= p2
n2

.
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An important application of partial pressure is that, in chemistry, it functions as the concentration of a gas in determining the
rate of a reaction. Here, we mention only that the partial pressure of oxygen in a person’s lungs is crucial to life and health.
Breathing air that has a partial pressure of oxygen below 0.16 atm can impair coordination and judgment, particularly in
people not acclimated to a high elevation. Lower partial pressures of O2 have more serious effects; partial pressures below

0.06 atm can be quickly fatal, and permanent damage is likely even if the person is rescued. However, the sensation of
needing to breathe, as when holding one’s breath, is caused much more by high concentrations of carbon dioxide in the
blood than by low concentrations of oxygen. Thus, if a small room or closet is filled with air having a low concentration of
oxygen, perhaps because a leaking cylinder of some compressed gas is stored there, a person will not feel any “choking”
sensation and may go into convulsions or lose consciousness without noticing anything wrong. Safety engineers give
considerable attention to this danger.

Another important application of partial pressure is vapor pressure, which is the partial pressure of a vapor at which it is
in equilibrium with the liquid (or solid, in the case of sublimation) phase of the same substance. At any temperature, the
partial pressure of the water in the air cannot exceed the vapor pressure of the water at that temperature, because whenever
the partial pressure reaches the vapor pressure, water condenses out of the air. Dew is an example of this condensation. The
temperature at which condensation occurs for a sample of air is called the dew point. It is easily measured by slowly cooling
a metal ball; the dew point is the temperature at which condensation first appears on the ball.

The vapor pressures of water at some temperatures of interest for meteorology are given in Table 2.2.

T (°C) Vapor Pressure (Pa)

0 610.5

3 757.9

5 872.3

8 1073

10 1228

13 1497

15 1705

18 2063

20 2338

23 2809

25 3167

30 4243

35 5623

40 7376

Table 2.2 Vapor Pressure of Water at
Various Temperatures

The relative humidity (R.H.) at a temperature T is defined by

R.H. = Partial pressure of water vapor at T
Vapor pressure of water at T × 100%.

A relative humidity of 100% means that the partial pressure of water is equal to the vapor pressure; in other words, the air

is saturated with water.

Example 2.6

Calculating Relative Humidity

What is the relative humidity when the air temperature is 25 ºC and the dew point is 15 ºC ?
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Strategy

We simply look up the vapor pressure at the given temperature and that at the dew point and find the ratio.

Solution

R.H. = Partial pressure of water vapor at 15 °C
Partial pressure of water vapor at 25 °C × 100% = 1705 Pa

3167 Pa × 100% = 53.8%.

Significance

R.H. is important to our comfort. The value of 53.8% is within the range of 40% to 60% recommended for

comfort indoors.

As noted in the chapter on temperature and heat, the temperature seldom falls below the dew point, because when
it reaches the dew point or frost point, water condenses and releases a relatively large amount of latent heat of
vaporization.

Mean Free Path and Mean Free Time
We now consider collisions explicitly. The usual first step (which is all we’ll take) is to calculate the mean free path, λ,
the average distance a molecule travels between collisions with other molecules, and the mean free time τ , the average

time between the collisions of a molecule. If we assume all the molecules are spheres with a radius r, then a molecule will
collide with another if their centers are within a distance 2r of each other. For a given particle, we say that the area of a

circle with that radius, 4πr2 , is the “cross-section” for collisions. As the particle moves, it traces a cylinder with that cross-

sectional area. The mean free path is the length λ such that the expected number of other molecules in a cylinder of length

λ and cross-section 4πr2 is 1. If we temporarily ignore the motion of the molecules other than the one we’re looking at,

the expected number is the number density of molecules, N/V, times the volume, and the volume is 4πr2 λ , so we have

(N/V)4πr2 λ = 1, or

λ = V
4πr2 N

.

Taking the motion of all the molecules into account makes the calculation much harder, but the only change is a factor of
2. The result is

(2.10)λ = V
4 2πr2 N

.

In an ideal gas, we can substitute V /N = kB T /p to obtain

(2.11)λ = kB T
4 2πr2 p

.

The mean free time τ is simply the mean free path divided by a typical speed, and the usual choice is the rms speed. Then

(2.12)τ = kB T
4 2πr2 pvrms

.
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2.5

Example 2.7

Calculating Mean Free Time

Find the mean free time for argon atoms (M = 39.9 g/mol⎞
⎠ at a temperature of 0 °C and a pressure of 1.00 atm.

Take the radius of an argon atom to be 1.70 × 10−10 m.

Solution
1. Identify the knowns and convert into SI units. We know the molar mass is 0.0399 kg/mol, the temperature

is 273 K, the pressure is 1.01 × 105 Pa, and the radius is 1.70 × 10−10 m.

2. Find the rms speed: vrms = 3RT
M = 413 m

s .

3. Substitute into the equation for the mean free time:

τ = kB T
4 2πr2 pvrms

= (1.38 × 10−23 J/K) (273 K)
4 2π(1.70 × 10−10 m)2(1.01 × 105 Pa)(413 m/s)

= 1.76 × 10−10 s.

Significance

We can hardly compare this result with our intuition about gas molecules, but it gives us a picture of molecules
colliding with extremely high frequency.

Check Your Understanding Which has a longer mean free path, liquid water or water vapor in the air?

2.3 | Heat Capacity and Equipartition of Energy

Learning Objectives

By the end of this section, you will be able to:

• Solve problems involving heat transfer to and from ideal monatomic gases whose volumes are
held constant

• Solve similar problems for non-monatomic ideal gases based on the number of degrees of
freedom of a molecule

• Estimate the heat capacities of metals using a model based on degrees of freedom

In the chapter on temperature and heat, we defined the specific heat capacity with the equation Q = mcΔT , or

c = (1/m)Q/ΔT . However, the properties of an ideal gas depend directly on the number of moles in a sample, so here we

define specific heat capacity in terms of the number of moles, not the mass. Furthermore, when talking about solids and
liquids, we ignored any changes in volume and pressure with changes in temperature—a good approximation for solids and
liquids, but for gases, we have to make some condition on volume or pressure changes. Here, we focus on the heat capacity
with the volume held constant. We can calculate it for an ideal gas.

Heat Capacity of an Ideal Monatomic Gas at Constant Volume
We define the molar heat capacity at constant volume CV as

CV = 1
n

Q
ΔT , with V held constant.

This is often expressed in the form
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2.6

(2.13)Q = nCV ΔT .

If the volume does not change, there is no overall displacement, so no work is done, and the only change in internal
energy is due to the heat flow ΔEint = Q. (This statement is discussed further in the next chapter.) We use the equation

Eint = 3nRT /2 to write ΔEint = 3nRΔT /2 and substitute ΔE for Q to find Q = 3nRΔT /2 , which gives the following

simple result for an ideal monatomic gas:

CV = 3
2R.

It is independent of temperature, which justifies our use of finite differences instead of a derivative. This formula agrees
well with experimental results.

In the next chapter we discuss the molar specific heat at constant pressure C p, which is always greater than CV.

Example 2.8

Calculating Temperature

A sample of 0.125 kg of xenon is contained in a rigid metal cylinder, big enough that the xenon can be modeled
as an ideal gas, at a temperature of 20.0 °C . The cylinder is moved outside on a hot summer day. As the xenon

comes into equilibrium by reaching the temperature of its surroundings, 180 J of heat are conducted to it through
the cylinder walls. What is the equilibrium temperature? Ignore the expansion of the metal cylinder.

Solution
1. Identify the knowns: We know the initial temperature T1 is 20.0 °C , the heat Q is 180 J, and the mass

m of the xenon is 0.125 kg.

2. Identify the unknown. We need the final temperature, so we’ll need ΔT .

3. Determine which equations are needed. Because xenon gas is monatomic, we can use Q = 3nRΔT /2.
Then we need the number of moles, n = m/M.

4. Substitute the known values into the equations and solve for the unknowns.
The molar mass of xenon is 131.3 g, so we obtain

n = 125 g
131.3 g/mol = 0.952 mol,

ΔT = 2Q
3nR = 2(180 J)

3(0.952 mol)(8.31 J/mol · °C) = 15.2 °C.

Therefore, the final temperature is 35.2 °C . The problem could equally well be solved in kelvin; as a

kelvin is the same size as a degree Celsius of temperature change, you would get ΔT = 15.2 K.

Significance

The heating of an ideal or almost ideal gas at constant volume is important in car engines and many other practical
systems.

Check Your Understanding Suppose 2 moles of helium gas at 200 K are mixed with 2 moles of krypton
gas at 400 K in a calorimeter. What is the final temperature?

We would like to generalize our results to ideal gases with more than one atom per molecule. In such systems, the molecules
can have other forms of energy beside translational kinetic energy, such as rotational kinetic energy and vibrational kinetic
and potential energies. We will see that a simple rule lets us determine the average energies present in these forms and solve
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problems in much the same way as we have for monatomic gases.

Degrees of Freedom

In the previous section, we found that 1
2mv2

–
= 3

2kB T and v2
–

= 3vx
2

–
, from which it follows that 1

2mvx
2

–
= 1

2kB T . The

same equation holds for vy
2

–
and for vz

2
–

. Thus, we can look at our energy of 3
2kB T as the sum of contributions of 1

2kB T

from each of the three dimensions of translational motion. Shifting to the gas as a whole, we see that the 3 in the formula

CV = 3
2R also reflects those three dimensions. We define a degree of freedom as an independent possible motion of a

molecule, such as each of the three dimensions of translation. Then, letting d represent the number of degrees of freedom,

the molar heat capacity at constant volume of a monatomic ideal gas is CV = d
2R, where d = 3 .

The branch of physics called statistical mechanics tells us, and experiment confirms, that CV of any ideal gas is given

by this equation, regardless of the number of degrees of freedom. This fact follows from a more general result, the
equipartition theorem, which holds in classical (non-quantum) thermodynamics for systems in thermal equilibrium under
technical conditions that are beyond our scope. Here, we mention only that in a system, the energy is shared among the
degrees of freedom by collisions.

Equipartition Theorem

The energy of a thermodynamic system in equilibrium is partitioned equally among its degrees of freedom.
Accordingly, the molar heat capacity of an ideal gas is proportional to its number of degrees of freedom, d:

(2.14)CV = d
2R.

This result is due to the Scottish physicist James Clerk Maxwell (1831−1871), whose name will appear several more times
in this book.

For example, consider a diatomic ideal gas (a good model for nitrogen, N2, and oxygen, O2). Such a gas has more

degrees of freedom than a monatomic gas. In addition to the three degrees of freedom for translation, it has two degrees
of freedom for rotation perpendicular to its axis. Furthermore, the molecule can vibrate along its axis. This motion is often
modeled by imagining a spring connecting the two atoms, and we know from simple harmonic motion that such motion has
both kinetic and potential energy. Each of these forms of energy corresponds to a degree of freedom, giving two more.

We might expect that for a diatomic gas, we should use 7 as the number of degrees of freedom; classically, if the molecules
of a gas had only translational kinetic energy, collisions between molecules would soon make them rotate and vibrate.
However, as explained in the previous module, quantum mechanics controls which degrees of freedom are active. The
result is shown in Figure 2.13. Both rotational and vibrational energies are limited to discrete values. For temperatures
below about 60 K, the energies of hydrogen molecules are too low for a collision to bring the rotational state or vibrational
state of a molecule from the lowest energy to the second lowest, so the only form of energy is translational kinetic energy,
and d = 3 or CV = 3R/2 as in a monatomic gas. Above that temperature, the two rotational degrees of freedom begin

to contribute, that is, some molecules are excited to the rotational state with the second-lowest energy. (This temperature
is much lower than that where rotations of monatomic gases contribute, because diatomic molecules have much higher
rotational inertias and hence much lower rotational energies.) From about room temperature (a bit less than 300 K) to about
600 K, the rotational degrees of freedom are fully active, but the vibrational ones are not, and d = 5 . Then, finally, above

about 3000 K, the vibrational degrees of freedom are fully active, and d = 7 as the classical theory predicted.

90 Chapter 2 | The Kinetic Theory of Gases

This OpenStax book is available for free at http://cnx.org/content/col12074/1.3



Figure 2.13 The molar heat capacity of hydrogen as a function of temperature (on a logarithmic
scale). The three “steps” or “plateaus” show different numbers of degrees of freedom that the
typical energies of molecules must achieve to activate. Translational kinetic energy corresponds to
three degrees of freedom, rotational to another two, and vibrational to yet another two.

Polyatomic molecules typically have one additional rotational degree of freedom at room temperature, since they have
comparable moments of inertia around any axis. Thus, at room temperature, they have d = 6, and at high temperature,

d = 8. We usually assume that gases have the theoretical room-temperature values of d.

As shown in Table 2.3, the results agree well with experiments for many monatomic and diatomic gases, but the agreement
for triatomic gases is only fair. The differences arise from interactions that we have ignored between and within molecules.

Gas CV /R at 25 °C and 1 atm

Ar 1.50

He 1.50

Ne 1.50

CO 2.50

H2 2.47

N2 2.50

O2 2.53

F2 2.8

CO2 3.48

H2 S 3.13

N2 O 3.66

Table 2.3 CV /R for Various Monatomic,

Diatomic, and Triatomic Gases

What about internal energy for diatomic and polyatomic gases? For such gases, CV is a function of temperature (Figure

2.13), so we do not have the kind of simple result we have for monatomic ideal gases.

Chapter 2 | The Kinetic Theory of Gases 91



Molar Heat Capacity of Solid Elements
The idea of equipartition leads to an estimate of the molar heat capacity of solid elements at ordinary temperatures. We can
model the atoms of a solid as attached to neighboring atoms by springs (Figure 2.14).

Figure 2.14 In a simple model of a solid element, each atom
is attached to others by six springs, two for each possible
motion: x, y, and z. Each of the three motions corresponds to two
degrees of freedom, one for kinetic energy and one for potential
energy. Thus d = 6.

Analogously to the discussion of vibration in the previous module, each atom has six degrees of freedom: one kinetic and
one potential for each of the x-, y-, and z-directions. Accordingly, the molar specific heat of a metal should be 3R. This
result, known as the Law of Dulong and Petit, works fairly well experimentally at room temperature. (For every element,
it fails at low temperatures for quantum-mechanical reasons. Since quantum effects are particularly important for low-mass
particles, the Law of Dulong and Petit already fails at room temperature for some light elements, such as beryllium and
carbon. It also fails for some heavier elements for various reasons beyond what we can cover.)

Problem-Solving Strategy: Heat Capacity and Equipartition

The strategy for solving these problems is the same as the one in Phase Changes for the effects of heat transfer.
The only new feature is that you should determine whether the case just presented—ideal gases at constant
volume—applies to the problem. (For solid elements, looking up the specific heat capacity is generally better than
estimating it from the Law of Dulong and Petit.) In the case of an ideal gas, determine the number d of degrees of
freedom from the number of atoms in the gas molecule and use it to calculate CV (or use CV to solve for d).

Example 2.9

Calculating Temperature: Calorimetry with an Ideal Gas

A 300-g piece of solid gallium (a metal used in semiconductor devices) at its melting point of only 30.0 °C is

in contact with 12.0 moles of air (assumed diatomic) at 95.0 °C in an insulated container. When the air reaches

equilibrium with the gallium, 202 g of the gallium have melted. Based on those data, what is the heat of fusion of
gallium? Assume the volume of the air does not change and there are no other heat transfers.
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Strategy

We’ll use the equation Qhot + Qcold = 0. As some of the gallium doesn’t melt, we know the final temperature

is still the melting point. Then the only Qhot is the heat lost as the air cools, Qhot = nair CV ΔT , where

CV = 5R/2. The only Qcold is the latent heat of fusion of the gallium, Qcold = mGa Lf. It is positive because

heat flows into the gallium.

Solution
1. Set up the equation:

nair CV ΔT + mGa Lf = 0.
2. Substitute the known values and solve:

(12.0 mol)⎛
⎝
5
2

⎞
⎠
⎛
⎝8.31 J

mol · °C
⎞
⎠(30.0 °C − 95.0 °C) + (0.202 kg)Lf = 0.

We solve to find that the heat of fusion of gallium is 80.2 kJ/kg.

2.4 | Distribution of Molecular Speeds

Learning Objectives

By the end of this section, you will be able to:

• Describe the distribution of molecular speeds in an ideal gas

• Find the average and most probable molecular speeds in an ideal gas

Particles in an ideal gas all travel at relatively high speeds, but they do not travel at the same speed. The rms speed is
one kind of average, but many particles move faster and many move slower. The actual distribution of speeds has several
interesting implications for other areas of physics, as we will see in later chapters.

The Maxwell-Boltzmann Distribution
The motion of molecules in a gas is random in magnitude and direction for individual molecules, but a gas of many
molecules has a predictable distribution of molecular speeds. This predictable distribution of molecular speeds is known as
the Maxwell-Boltzmann distribution, after its originators, who calculated it based on kinetic theory, and it has since been
confirmed experimentally (Figure 2.15).

To understand this figure, we must define a distribution function of molecular speeds, since with a finite number of
molecules, the probability that a molecule will have exactly a given speed is 0.
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Figure 2.15 The Maxwell-Boltzmann distribution of molecular speeds in an
ideal gas. The most likely speed vp is less than the rms speed vrms . Although

very high speeds are possible, only a tiny fraction of the molecules have speeds
that are an order of magnitude greater than vrms.

We define the distribution function f (v) by saying that the expected number N(v1, v2) of particles with speeds between

v1 and v2 is given by

N(v1, v2) = N∫
v1

v2
f (v)dv.

[Since N is dimensionless, the unit of f(v) is seconds per meter.] We can write this equation conveniently in differential
form:

dN = N f (v)dv.

In this form, we can understand the equation as saying that the number of molecules with speeds between v and v + dv is

the total number of molecules in the sample times f(v) times dv. That is, the probability that a molecule’s speed is between
v and v + dv is f(v)dv.

We can now quote Maxwell’s result, although the proof is beyond our scope.

Maxwell-Boltzmann Distribution of Speeds

The distribution function for speeds of particles in an ideal gas at temperature T is

(2.15)
f (v) = 4

π
⎛
⎝

m
2kB T

⎞
⎠

3/2
v2 e

−mv2 /2kB T
.

The factors before the v2 are a normalization constant; they make sure that N(0, ∞) = N by making sure that

∫
0

∞
f (v)dv = 1. Let’s focus on the dependence on v. The factor of v2 means that f (0) = 0 and for small v, the curve

looks like a parabola. The factor of e
−m0 v2 /2kB T

means that limv → ∞ f (v) = 0 and the graph has an exponential tail, which

indicates that a few molecules may move at several times the rms speed. The interaction of these factors gives the function
the single-peaked shape shown in the figure.
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Example 2.10

Calculating the Ratio of Numbers of Molecules Near Given Speeds

In a sample of nitrogen (N2, with a molar mass of 28.0 g/mol) at a temperature of 273 °C , find the ratio of the

number of molecules with a speed very close to 300 m/s to the number with a speed very close to 100 m/s.

Strategy

Since we’re looking at a small range, we can approximate the number of molecules near 100 m/s as
dN100 = f (100 m/s)dv. Then the ratio we want is

dN300
dN100

= f (300 m/s)dv
f (100 m/s)dv = f (300 m/s)

f (100 m/s).

All we have to do is take the ratio of the two f values.

Solution
1. Identify the knowns and convert to SI units if necessary.

T = 300 K, kB = 1.38 × 10−23 J/K

M = 0.0280 kg/mol so m = 4.65 × 10−26 kg
2. Substitute the values and solve.

f (300 m/s)
f (100 m/s) =

4
π

⎛
⎝

m
2kB T

⎞
⎠

3/2
(300 m/s)2 exp[−m(300 m/s)2 /2kB T]

4
π

⎛
⎝

m
2kB T

⎞
⎠

3/2
(100 m/s)2 exp[−m(100 m/s)2 /2kB T]

= (300 m/s)2 exp[−(4.65 × 10−26 kg)(300 m/s)2 /2(1.38 × 10−23 J/K)(300 K)]
(100 m/s)2 exp[−(4.65 × 10−26 kg)(100 m/s)2 /2(1.38 × 10−23 J/K)(300 K)]

= 32 exp
⎡

⎣
⎢−(4.65 × 10−26 kg)[(300 m/s)2 − (100 ms)2]

2(1.38 × 10−23 J/K)(300 K)

⎤

⎦
⎥

= 5.74

Figure 2.16 shows that the curve is shifted to higher speeds at higher temperatures, with a broader range of speeds.

Figure 2.16 The Maxwell-Boltzmann distribution is shifted to
higher speeds and broadened at higher temperatures.
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With only a relatively small number of molecules, the distribution of speeds fluctuates around the Maxwell-
Boltzmann distribution. However, you can view this simulation (https://openstaxcollege.org/l/
21maxboltzdisim) to see the essential features that more massive molecules move slower and have a narrower
distribution. Use the set-up “2 Gases, Random Speeds”. Note the display at the bottom comparing histograms of
the speed distributions with the theoretical curves.

We can use a probability distribution to calculate average values by multiplying the distribution function by the quantity
to be averaged and integrating the product over all possible speeds. (This is analogous to calculating averages of discrete
distributions, where you multiply each value by the number of times it occurs, add the results, and divide by the number
of values. The integral is analogous to the first two steps, and the normalization is analogous to dividing by the number of
values.) Thus the average velocity is

(2.16)
v̄ = ⌠

⌡0

∞
v f (v)dv = 8

π
kB T

m = 8
π

RT
M .

Similarly,

vrms = v2
–

= ∫
0

∞
v2 f (v)dv = 3kB T

m = 3RT
M

as in Pressure, Temperature, and RMS Speed. The most probable speed, also called the peak speed v p, is the

speed at the peak of the velocity distribution. (In statistics it would be called the mode.) It is less than the rms speed vrms.
The most probable speed can be calculated by the more familiar method of setting the derivative of the distribution function,
with respect to v, equal to 0. The result is

(2.17)
v p = 2kB T

m = 2RT
M ,

which is less than vrms. In fact, the rms speed is greater than both the most probable speed and the average speed.

The peak speed provides a sometimes more convenient way to write the Maxwell-Boltzmann distribution function:

(2.18)
f (v) = 4v2

πv p
3 e

−v2 /v p
2

In the factor e
−mv2 /2kB T

, it is easy to recognize the translational kinetic energy. Thus, that expression is equal to

e
−K/kB T

. The distribution f(v) can be transformed into a kinetic energy distribution by requiring that f (K)dK = f (v)dv.
Boltzmann showed that the resulting formula is much more generally applicable if we replace the kinetic energy of
translation with the total mechanical energy E. Boltzmann’s result is

f (E) = 2
π(kB T)−3/2 Ee

−E/kB T
= 2

π(kB T)3/2
E

e
E/kB T .

The first part of this equation, with the negative exponential, is the usual way to write it. We give the second part only to

remark that e
E/kB T

in the denominator is ubiquitous in quantum as well as classical statistical mechanics.

Problem-Solving Strategy: Speed Distribution

Step 1. Examine the situation to determine that it relates to the distribution of molecular speeds.
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Step 2. Make a list of what quantities are given or can be inferred from the problem as stated (identify the known
quantities).

Step 3. Identify exactly what needs to be determined in the problem (identify the unknown quantities). A written list
is useful.

Step 4. Convert known values into proper SI units (K for temperature, Pa for pressure, m3 for volume, molecules for

N, and moles for n). In many cases, though, using R and the molar mass will be more convenient than using kB and

the molecular mass.

Step 5. Determine whether you need the distribution function for velocity or the one for energy, and whether you are
using a formula for one of the characteristic speeds (average, most probably, or rms), finding a ratio of values of the
distribution function, or approximating an integral.

Step 6. Solve the appropriate equation for the ideal gas law for the quantity to be determined (the unknown quantity).
Note that if you are taking a ratio of values of the distribution function, the normalization factors divide out. Or if
approximating an integral, use the method asked for in the problem.

Step 7. Substitute the known quantities, along with their units, into the appropriate equation and obtain numerical
solutions complete with units.

We can now gain a qualitative understanding of a puzzle about the composition of Earth’s atmosphere. Hydrogen is by far
the most common element in the universe, and helium is by far the second-most common. Moreover, helium is constantly
produced on Earth by radioactive decay. Why are those elements so rare in our atmosphere? The answer is that gas
molecules that reach speeds above Earth’s escape velocity, about 11 km/s, can escape from the atmosphere into space.
Because of the lower mass of hydrogen and helium molecules, they move at higher speeds than other gas molecules, such as
nitrogen and oxygen. Only a few exceed escape velocity, but far fewer heavier molecules do. Thus, over the billions of years
that Earth has existed, far more hydrogen and helium molecules have escaped from the atmosphere than other molecules,
and hardly any of either is now present.

We can also now take another look at evaporative cooling, which we discussed in the chapter on temperature and heat.
Liquids, like gases, have a distribution of molecular energies. The highest-energy molecules are those that can escape from
the intermolecular attractions of the liquid. Thus, when some liquid evaporates, the molecules left behind have a lower
average energy, and the liquid has a lower temperature.
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Avogadro’s number

Boltzmann constant

critical temperature

Dalton’s law of partial pressures

degree of freedom

equipartition theorem

ideal gas

ideal gas law

internal energy

kinetic theory of gases

Maxwell-Boltzmann distribution

mean free path

mean free time

mole

most probable speed

partial pressure

peak speed

pV diagram

root-mean-square (rms) speed

supercritical

universal gas constant

van der Waals equation of state

vapor pressure

CHAPTER 2 REVIEW

KEY TERMS

NA, the number of molecules in one mole of a substance; NA = 6.02 × 1023 particles/mole

kB, a physical constant that relates energy to temperature and appears in the ideal gas law;

kB = 1.38 × 10−23 J/K

Tc at which the isotherm has a point with zero slope

physical law that states that the total pressure of a gas is the sum of partial
pressures of the component gases

independent kind of motion possessing energy, such as the kinetic energy of motion in one of the
three orthogonal spatial directions

theorem that the energy of a classical thermodynamic system is shared equally among its
degrees of freedom

gas at the limit of low density and high temperature

physical law that relates the pressure and volume of a gas, far from liquefaction, to the number of gas
molecules or number of moles of gas and the temperature of the gas

sum of the mechanical energies of all of the molecules in it

theory that derives the macroscopic properties of gases from the motion of the molecules they
consist of

function that can be integrated to give the probability of finding ideal gas molecules
with speeds in the range between the limits of integration

average distance between collisions of a particle

average time between collisions of a particle

quantity of a substance whose mass (in grams) is equal to its molecular mass

speed near which the speeds of most molecules are found, the peak of the speed distribution
function

pressure a gas would create if it occupied the total volume of space available

same as “most probable speed”

graph of pressure vs. volume

square root of the average of the square (of a quantity)

condition of a fluid being at such a high temperature and pressure that the liquid phase cannot exist

R, the constant that appears in the ideal gas law expressed in terms of moles, given by
R = NA kB

equation, typically approximate, which relates the pressure and volume of a gas to
the number of gas molecules or number of moles of gas and the temperature of the gas

partial pressure of a vapor at which it is in equilibrium with the liquid (or solid, in the case of
sublimation) phase of the same substance

KEY EQUATIONS
Ideal gas law in terms of molecules pV = NkB T
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Ideal gas law ratios if the amount of gas is constant p1 V1
T1

= p2 V2
T2

Ideal gas law in terms of moles pV = nRT

Van der Waals equation ⎡

⎣
⎢p + a⎛

⎝
n
V

⎞
⎠
2⎤

⎦
⎥(V−nb) = nRT

Pressure, volume, and molecular speed pV = 1
3Nmv2

–

Root-mean-square speed
vrms = 3RT

M = 3kB T
m

Mean free path λ = V
4 2πr2 N

= kB T
4 2πr2 p

Mean free time τ = kB T
4 2πr2 pvrms

The following two equations apply only to a monatomic ideal gas:

Average kinetic energy of a molecule K– = 3
2kB T

Internal energy Eint = 3
2NkB T .

Heat in terms of molar heat capacity at constant volume Q = nCV ΔT

Molar heat capacity at constant volume for an ideal gas with d
degrees of freedom

CV = d
2R

Maxwell–Boltzmann speed distribution
f (v) = 4

π
⎛
⎝

m
2kB T

⎞
⎠

3/2
v2 e

−mv2 /2kB T

Average velocity of a molecule
v̄ = 8

π
kB T

m = 8
π

RT
M

Peak velocity of a molecule
v p = 2kB T

m = 2RT
M

SUMMARY

2.1 Molecular Model of an Ideal Gas

• The ideal gas law relates the pressure and volume of a gas to the number of gas molecules and the temperature of
the gas.

• A mole of any substance has a number of molecules equal to the number of atoms in a 12-g sample of carbon-12.
The number of molecules in a mole is called Avogadro’s number NA,

NA = 6.02 × 1023 mol−1.
• A mole of any substance has a mass in grams numerically equal to its molecular mass in unified mass units, which

can be determined from the periodic table of elements. The ideal gas law can also be written and solved in terms of
the number of moles of gas:

pV = nRT ,
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where n is the number of moles and R is the universal gas constant,

R = 8.31 J/mol · K.
• The ideal gas law is generally valid at temperatures well above the boiling temperature.

• The van der Waals equation of state for gases is valid closer to the boiling point than the ideal gas law.

• Above the critical temperature and pressure for a given substance, the liquid phase does not exist, and the sample is
“supercritical.”

2.2 Pressure, Temperature, and RMS Speed

• Kinetic theory is the atomic description of gases as well as liquids and solids. It models the properties of matter in
terms of continuous random motion of molecules.

• The ideal gas law can be expressed in terms of the mass of the gas’s molecules and v2
–

, the average of the

molecular speed squared, instead of the temperature.

• The temperature of gases is proportional to the average translational kinetic energy of molecules. Hence, the typical
speed of gas molecules vrms is proportional to the square root of the temperature and inversely proportional to the

square root of the molecular mass.

• In a mixture of gases, each gas exerts a pressure equal to the total pressure times the fraction of the mixture that the
gas makes up.

• The mean free path (the average distance between collisions) and the mean free time of gas molecules are
proportional to the temperature and inversely proportional to the molar density and the molecules’ cross-sectional
area.

2.3 Heat Capacity and Equipartition of Energy

• Every degree of freedom of an ideal gas contributes 1
2kB T per atom or molecule to its changes in internal energy.

• Every degree of freedom contributes 1
2R to its molar heat capacity at constant volume CV.

• Degrees of freedom do not contribute if the temperature is too low to excite the minimum energy of the degree of
freedom as given by quantum mechanics. Therefore, at ordinary temperatures, d = 3 for monatomic gases, d = 5
for diatomic gases, and d ≈ 6 for polyatomic gases.

2.4 Distribution of Molecular Speeds

• The motion of individual molecules in a gas is random in magnitude and direction. However, a gas of many
molecules has a predictable distribution of molecular speeds, known as the Maxwell-Boltzmann distribution.

• The average and most probable velocities of molecules having the Maxwell-Boltzmann speed distribution, as well
as the rms velocity, can be calculated from the temperature and molecular mass.

CONCEPTUAL QUESTIONS

2.1 Molecular Model of an Ideal Gas

1. Two H2 molecules can react with one O2 molecule

to produce two H2 O molecules. How many moles of

hydrogen molecules are needed to react with one mole of
oxygen molecules?

2. Under what circumstances would you expect a gas to
behave significantly differently than predicted by the ideal
gas law?

3. A constant-volume gas thermometer contains a fixed
amount of gas. What property of the gas is measured to
indicate its temperature?

4. Inflate a balloon at room temperature. Leave the
inflated balloon in the refrigerator overnight. What happens
to the balloon, and why?

5. In the last chapter, free convection was explained as the
result of buoyant forces on hot fluids. Explain the upward
motion of air in flames based on the ideal gas law.
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2.2 Pressure, Temperature, and RMS Speed

6. How is momentum related to the pressure exerted by
a gas? Explain on the molecular level, considering the
behavior of molecules.

7. If one kind of molecule has double the radius of another
and eight times the mass, how do their mean free paths
under the same conditions compare? How do their mean
free times compare?

8. What is the average velocity of the air molecules in the
room where you are right now?

9. Why do the atmospheres of Jupiter, Saturn, Uranus, and
Neptune, which are much more massive and farther from
the Sun than Earth is, contain large amounts of hydrogen
and helium?

10. Statistical mechanics says that in a gas maintained at a
constant temperature through thermal contact with a bigger
system (a “reservoir”) at that temperature, the fluctuations
in internal energy are typically a fraction 1/ N of the

internal energy. As a fraction of the total internal energy of
a mole of gas, how big are the fluctuations in the internal
energy? Are we justified in ignoring them?

11. Which is more dangerous, a closet where tanks of
nitrogen are stored, or one where tanks of carbon dioxide
are stored?

2.3 Heat Capacity and Equipartition of Energy

12. Experimentally it appears that many polyatomic

molecules’ vibrational degrees of freedom can contribute
to some extent to their energy at room temperature. Would
you expect that fact to increase or decrease their heat
capacity from the value R? Explain.

13. One might think that the internal energy of diatomic
gases is given by Eint = 5RT /2. Do diatomic gases near

room temperature have more or less internal energy than
that? Hint: Their internal energy includes the total energy
added in raising the temperature from the boiling point
(very low) to room temperature.

14. You mix 5 moles of H2 at 300 K with 5 moles of

He at 360 K in a perfectly insulated calorimeter. Is the final
temperature higher or lower than 330 K?

2.4 Distribution of Molecular Speeds

15. One cylinder contains helium gas and another contains
krypton gas at the same temperature. Mark each of these
statements true, false, or impossible to determine from the
given information. (a) The rms speeds of atoms in the
two gases are the same. (b) The average kinetic energies
of atoms in the two gases are the same. (c) The internal
energies of 1 mole of gas in each cylinder are the same. (d)
The pressures in the two cylinders are the same.

16. Repeat the previous question if one gas is still helium
but the other is changed to fluorine, F2 .

17. An ideal gas is at a temperature of 300 K. To double
the average speed of its molecules, what does the
temperature need to be changed to?

PROBLEMS

2.1 Molecular Model of an Ideal Gas

18. The gauge pressure in your car tires is

2.50 × 105 N/m2 at a temperature of 35.0 °C when you

drive it onto a ship in Los Angeles to be sent to Alaska.
What is their gauge pressure on a night in Alaska when
their temperature has dropped to −40.0 °C ? Assume the

tires have not gained or lost any air.

19. Suppose a gas-filled incandescent light bulb is
manufactured so that the gas inside the bulb is at
atmospheric pressure when the bulb has a temperature of
20.0 °C . (a) Find the gauge pressure inside such a bulb

when it is hot, assuming its average temperature is 60.0 °C
(an approximation) and neglecting any change in volume
due to thermal expansion or gas leaks. (b) The actual final
pressure for the light bulb will be less than calculated in

part (a) because the glass bulb will expand. Is this effect
significant?

20. People buying food in sealed bags at high elevations
often notice that the bags are puffed up because the air
inside has expanded. A bag of pretzels was packed at a
pressure of 1.00 atm and a temperature of 22.0 °C. When

opened at a summer picnic in Santa Fe, New Mexico, at a
temperature of 32.0 °C, the volume of the air in the bag is

1.38 times its original volume. What is the pressure of the
air?

21. How many moles are there in (a) 0.0500 g of N2

gas (M = 28.0 g/mol⎞
⎠? (b) 10.0 g of CO2 gas

(M = 44.0 g/mol)? (c) How many molecules are present

in each case?
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22. A cubic container of volume 2.00 L holds 0.500 mol
of nitrogen gas at a temperature of 25.0 °C. What is the

net force due to the nitrogen on one wall of the container?
Compare that force to the sample’s weight.

23. Calculate the number of moles in the 2.00-L volume
of air in the lungs of the average person. Note that the air
is at 37.0 °C (body temperature) and that the total volume

in the lungs is several times the amount inhaled in a typical
breath as given in Example 2.2.

24. An airplane passenger has 100 cm3 of air in his

stomach just before the plane takes off from a sea-level
airport. What volume will the air have at cruising altitude if

cabin pressure drops to 7.50 × 104 N/m2 ?

25. A company advertises that it delivers helium at a

gauge pressure of 1.72 × 107 Pa in a cylinder of volume

43.8 L. How many balloons can be inflated to a volume of
4.00 L with that amount of helium? Assume the pressure

inside the balloons is 1.01 × 105 Pa and the temperature

in the cylinder and the balloons is 25.0 °C .

26. According to http://hyperphysics.phy-astr.gsu.edu/
hbase/solar/venusenv.html, the atmosphere of Venus is
approximately 96.5% CO2 and 3.5% N2 by volume. On

the surface, where the temperature is about 750 K and
the pressure is about 90 atm, what is the density of the
atmosphere?

27. An expensive vacuum system can achieve a pressure

as low as 1.00 × 10−7 N/m2 at 20.0 °C. How many

molecules are there in a cubic centimeter at this pressure
and temperature?

28. The number density N/V of gas molecules at a certain
location in the space above our planet is about

1.00 × 1011 m−3, and the pressure is

2.75 × 10−10 N/m2 in this space. What is the temperature

there?

29. A bicycle tire contains 2.00 L of gas at an absolute

pressure of 7.00 × 105 N/m2 and a temperature of

18.0 °C . What will its pressure be if you let out an amount

of air that has a volume of 100 cm3 at atmospheric

pressure? Assume tire temperature and volume remain
constant.

30. In a common demonstration, a bottle is heated and
stoppered with a hard-boiled egg that’s a little bigger than
the bottle’s neck. When the bottle is cooled, the pressure
difference between inside and outside forces the egg into

the bottle. Suppose the bottle has a volume of 0.500 L and
the temperature inside it is raised to 80.0 °C while the

pressure remains constant at 1.00 atm because the bottle
is open. (a) How many moles of air are inside? (b) Now
the egg is put in place, sealing the bottle. What is the
gauge pressure inside after the air cools back to the ambient
temperature of 25 °C but before the egg is forced into the

bottle?

31. A high-pressure gas cylinder contains 50.0 L of toxic

gas at a pressure of 1.40 × 107 N/m2 and a temperature

of 25.0 °C . The cylinder is cooled to dry ice temperature

(−78.5 °C) to reduce the leak rate and pressure so that

it can be safely repaired. (a) What is the final pressure in
the tank, assuming a negligible amount of gas leaks while
being cooled and that there is no phase change? (b) What
is the final pressure if one-tenth of the gas escapes? (c) To
what temperature must the tank be cooled to reduce the
pressure to 1.00 atm (assuming the gas does not change
phase and that there is no leakage during cooling)? (d)
Does cooling the tank as in part (c) appear to be a practical
solution?

32. Find the number of moles in 2.00 L of gas at 35.0 °C
and under 7.41 × 107 N/m2 of pressure.

33. Calculate the depth to which Avogadro’s number of
table tennis balls would cover Earth. Each ball has a
diameter of 3.75 cm. Assume the space between balls adds
an extra 25.0% to their volume and assume they are not

crushed by their own weight.

34. (a) What is the gauge pressure in a 25.0 °C car tire

containing 3.60 mol of gas in a 30.0-L volume? (b) What
will its gauge pressure be if you add 1.00 L of gas originally
at atmospheric pressure and 25.0 °C ? Assume the

temperature remains at 25.0 °C and the volume remains

constant.

2.2 Pressure, Temperature, and RMS Speed

In the problems in this section, assume all gases are ideal.

35. A person hits a tennis ball with a mass of 0.058 kg
against a wall. The average component of the ball’s velocity
perpendicular to the wall is 11 m/s, and the ball hits the
wall every 2.1 s on average, rebounding with the opposite
perpendicular velocity component. (a) What is the average
force exerted on the wall? (b) If the part of the wall the

person hits has an area of 3.0 m2, what is the average

pressure on that area?

36. A person is in a closed room (a racquetball court)
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with V = 453 m3 hitting a ball (m = 42.0 g⎞
⎠ around at

random without any pauses. The average kinetic energy
of the ball is 2.30 J. (a) What is the average value of

vx
2? Does it matter which direction you take to be x?

(b) Applying the methods of this chapter, find the average
pressure on the walls? (c) Aside from the presence of only
one “molecule” in this problem, what is the main
assumption in Pressure, Temperature, and RMS
Speed that does not apply here?

37. Five bicyclists are riding at the following speeds: 5.4
m/s, 5.7 m/s, 5.8 m/s, 6.0 m/s, and 6.5 m/s. (a) What is their
average speed? (b) What is their rms speed?

38. Some incandescent light bulbs are filled with argon
gas. What is vrms for argon atoms near the filament,

assuming their temperature is 2500 K?

39. Typical molecular speeds (vrms) are large, even at

low temperatures. What is vrms for helium atoms at 5.00

K, less than one degree above helium’s liquefaction
temperature?

40. What is the average kinetic energy in joules of
hydrogen atoms on the 5500 °C surface of the Sun? (b)

What is the average kinetic energy of helium atoms in
a region of the solar corona where the temperature is

6.00 × 105 K ?

41. What is the ratio of the average translational kinetic
energy of a nitrogen molecule at a temperature of 300
K to the gravitational potential energy of a nitrogen-
molecule−Earth system at the ceiling of a 3-m-tall room
with respect to the same system with the molecule at the
floor?

42. What is the total translational kinetic energy of the air

molecules in a room of volume 23 m3 if the pressure is

9.5 × 104 Pa (the room is at fairly high elevation) and the

temperature is 21 °C ? Is any item of data unnecessary for

the solution?

43. The product of the pressure and volume of a sample of
hydrogen gas at 0.00 °C is 80.0 J. (a) How many moles of

hydrogen are present? (b) What is the average translational
kinetic energy of the hydrogen molecules? (c) What is the
value of the product of pressure and volume at 200 °C?

44. What is the gauge pressure inside a tank of

4.86 × 104 mol of compressed nitrogen with a volume of

6.56 m3 if the rms speed is 514 m/s?

45. If the rms speed of oxygen molecules inside a

refrigerator of volume 22.0 ft.3 is 465 m/s, what is the

partial pressure of the oxygen? There are 5.71 moles of
oxygen in the refrigerator, and the molar mass of oxygen is
32.0 g/mol.

46. The escape velocity of any object from Earth is 11.1
km/s. At what temperature would oxygen molecules (molar
mass is equal to 32.0 g/mol) have root-mean-square
velocity vrms equal to Earth’s escape velocity of 11.1 km/

s?

47. The escape velocity from the Moon is much smaller
than that from the Earth, only 2.38 km/s. At what
temperature would hydrogen molecules (molar mass is
equal to 2.016 g/mol) have a root-mean-square velocity
vrms equal to the Moon’s escape velocity?

48. Nuclear fusion, the energy source of the Sun,
hydrogen bombs, and fusion reactors, occurs much more
readily when the average kinetic energy of the atoms is
high—that is, at high temperatures. Suppose you want the
atoms in your fusion experiment to have average kinetic

energies of 6.40 × 10−14 J . What temperature is needed?

49. Suppose that the typical speed (vrms) of carbon

dioxide molecules (molar mass is 44.0 g/mol) in a flame is
found to be 1350 m/s. What temperature does this indicate?

50. (a) Hydrogen molecules (molar mass is equal to 2.016
g/mol) have vrms equal to 193 m/s. What is the

temperature? (b) Much of the gas near the Sun is atomic
hydrogen (H rather than H2). Its temperature would have

to be 1.5 × 107 K for the rms speed vrms to equal the

escape velocity from the Sun. What is that velocity?

51. There are two important isotopes of uranium, 235 U

and 238 U ; these isotopes are nearly identical chemically

but have different atomic masses. Only 235 U is very

useful in nuclear reactors. Separating the isotopes is called
uranium enrichment (and is often in the news as of this
writing, because of concerns that some countries are
enriching uranium with the goal of making nuclear
weapons.) One of the techniques for enrichment, gas
diffusion, is based on the different molecular speeds of
uranium hexafluoride gas, UF6 . (a) The molar masses of

235 U and 238 UF6 are 349.0 g/mol and 352.0 g/mol,

respectively. What is the ratio of their typical speeds vrms ?

(b) At what temperature would their typical speeds differ by
1.00 m/s? (c) Do your answers in this problem imply that
this technique may be difficult?
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52. The partial pressure of carbon dioxide in the lungs is
about 470 Pa when the total pressure in the lungs is 1.0 atm.
What percentage of the air molecules in the lungs is carbon
dioxide? Compare your result to the percentage of carbon
dioxide in the atmosphere, about 0.033%.

53. Dry air consists of approximately
78% nitrogen, 21% oxygen, and 1% argon by mole, with

trace amounts of other gases. A tank of compressed dry air
has a volume of 1.76 cubic feet at a gauge pressure of 2200
pounds per square inch and a temperature of 293 K. How
much oxygen does it contain in moles?

54. (a) Using data from the previous problem, find the
mass of nitrogen, oxygen, and argon in 1 mol of dry air. The
molar mass of N2 is 28.0 g/mol, that of O2 is 32.0 g/mol,

and that of argon is 39.9 g/mol. (b) Dry air is mixed with
pentane (C5 H12, molar mass 72.2 g/mol), an important

constituent of gasoline, in an air-fuel ratio of 15:1 by mass
(roughly typical for car engines). Find the partial pressure
of pentane in this mixture at an overall pressure of 1.00
atm.

55. (a) Given that air is 21% oxygen, find the minimum

atmospheric pressure that gives a relatively safe partial
pressure of oxygen of 0.16 atm. (b) What is the minimum
pressure that gives a partial pressure of oxygen above the
quickly fatal level of 0.06 atm? (c) The air pressure at the
summit of Mount Everest (8848 m) is 0.334 atm. Why have
a few people climbed it without oxygen, while some who
have tried, even though they had trained at high elevation,
had to turn back?

56. (a) If the partial pressure of water vapor is 8.05 torr,
what is the dew point? (760 torr = 1 atm = 101, 325 Pa⎞

⎠

(b) On a warm day when the air temperature is 35 °C and

the dew point is 25 °C , what are the partial pressure of the

water in the air and the relative humidity?

2.3 Heat Capacity and Equipartition of Energy

57. To give a helium atom nonzero angular momentum
requires about 21.2 eV of energy (that is, 21.2 eV is the
difference between the energies of the lowest-energy or
ground state and the lowest-energy state with angular
momentum). The electron-volt or eV is defined as

1.60 × 10−19 J. Find the temperature T where this

amount of energy equals kB T /2. Does this explain why

we can ignore the rotational energy of helium for most
purposes? (The results for other monatomic gases, and for
diatomic gases rotating around the axis connecting the two
atoms, have comparable orders of magnitude.)

58. (a) How much heat must be added to raise the

temperature of 1.5 mol of air from 25.0 °C to 33.0 °C at

constant volume? Assume air is completely diatomic. (b)
Repeat the problem for the same number of moles of xenon,
Xe.

59. A sealed, rigid container of 0.560 mol of an unknown
ideal gas at a temperature of 30.0 °C is cooled to

−40.0 °C . In the process, 980 J of heat are removed from

the gas. Is the gas monatomic, diatomic, or polyatomic?

60. A sample of neon gas (Ne, molar mass
M = 20.2 g/mol) at a temperature of 13.0 °C is put into

a steel container of mass 47.2 g that’s at a temperature of
−40.0 °C . The final temperature is −28.0 °C . (No heat is

exchanged with the surroundings, and you can neglect any
change in the volume of the container.) What is the mass of
the sample of neon?

61. A steel container of mass 135 g contains 24.0 g of
ammonia, NH3 , which has a molar mass of 17.0 g/mol.

The container and gas are in equilibrium at 12.0 °C . How

much heat has to be removed to reach a temperature of
−20.0 °C ? Ignore the change in volume of the steel.

62. A sealed room has a volume of 24 m3 . It’s filled with

air, which may be assumed to be diatomic, at a temperature

of 24 °C and a pressure of 9.83 × 104 Pa. A 1.00-kg

block of ice at its melting point is placed in the room.
Assume the walls of the room transfer no heat. What is the
equilibrium temperature?

63. Heliox, a mixture of helium and oxygen, is sometimes
given to hospital patients who have trouble breathing,
because the low mass of helium makes it easier to breathe
than air. Suppose helium at 25 °C is mixed with oxygen

at 35 °C to make a mixture that is 70% helium by mole.

What is the final temperature? Ignore any heat flow to or
from the surroundings, and assume the final volume is the
sum of the initial volumes.

64. Professional divers sometimes use heliox, consisting
of 79% helium and 21% oxygen by mole. Suppose a

perfectly rigid scuba tank with a volume of 11 L contains

heliox at an absolute pressure of 2.1 × 107 Pa at a

temperature of 31 °C . (a) How many moles of helium and

how many moles of oxygen are in the tank? (b) The diver
goes down to a point where the sea temperature is 27 °C
while using a negligible amount of the mixture. As the gas
in the tank reaches this new temperature, how much heat is
removed from it?

65. In car racing, one advantage of mixing liquid nitrous
oxide (N2 O) with air is that the boiling of the “nitrous”
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absorbs latent heat of vaporization and thus cools the air
and ultimately the fuel-air mixture, allowing more fuel-air
mixture to go into each cylinder. As a very rough look
at this process, suppose 1.0 mol of nitrous oxide gas at
its boiling point, −88 °C , is mixed with 4.0 mol of air

(assumed diatomic) at 30 °C . What is the final

temperature of the mixture? Use the measured heat capacity
of N2 O at 25 °C , which is 30.4 J/mol °C . (The primary

advantage of nitrous oxide is that it consists of 1/3 oxygen,
which is more than air contains, so it supplies more oxygen
to burn the fuel. Another advantage is that its
decomposition into nitrogen and oxygen releases energy in
the cylinder.)

2.4 Distribution of Molecular Speeds

66. In a sample of hydrogen sulfide (M = 34.1 g/mol) at

a temperature of 3.00 × 102 K, estimate the ratio of the

number of molecules that have speeds very close to vrms

to the number that have speeds very close to 2vrms.

67. Using the approximation

∫
v1

v1 + Δv
f (v)dv ≈ f (v1)Δv for small Δv , estimate the

fraction of nitrogen molecules at a temperature of

3.00 × 102 K that have speeds between 290 m/s and 291

m/s.

68. Using the method of the preceding problem, estimate
the fraction of nitric oxide (NO) molecules at a temperature

of 250 K that have energies between 3.45 × 10−21 J and

3.50 × 10−21 J .

69. By counting squares in the following figure, estimate
the fraction of argon atoms at T = 300 K that have speeds

between 600 m/s and 800 m/s. The curve is correctly
normalized. The value of a square is its length as measured
on the x-axis times its height as measured on the y-axis,

with the units given on those axes.

70. Using a numerical integration method such as
Simpson’s rule, find the fraction of molecules in a sample
of oxygen gas at a temperature of 250 K that have speeds
between 100 m/s and 150 m/s. The molar mass of oxygen
⎛
⎝O2

⎞
⎠ is 32.0 g/mol. A precision to two significant digits is

enough.

71. Find (a) the most probable speed, (b) the average
speed, and (c) the rms speed for nitrogen molecules at 295
K.

72. Repeat the preceding problem for nitrogen molecules
at 2950 K.

73. At what temperature is the average speed of carbon
dioxide molecules (M = 44.0 g/mol) 510 m/s?

74. The most probable speed for molecules of a gas at 296
K is 263 m/s. What is the molar mass of the gas? (You
might like to figure out what the gas is likely to be.)

75. a) At what temperature do oxygen molecules have the
same average speed as helium atoms (M = 4.00 g/mol)
have at 300 K? b) What is the answer to the same question
about most probable speeds? c) What is the answer to the
same question about rms speeds?

ADDITIONAL PROBLEMS

76. In the deep space between galaxies, the density of
molecules (which are mostly single atoms) can be as low

as 106 atoms/m3, and the temperature is a frigid 2.7

K. What is the pressure? (b) What volume (in m3 ) is

occupied by 1 mol of gas? (c) If this volume is a cube, what
is the length of its sides in kilometers?

77. (a) Find the density in SI units of air at a pressure
of 1.00 atm and a temperature of 20 °C , assuming that

air is 78% N2, 21% O2, and 1% Ar , (b) Find the density

of the atmosphere on Venus, assuming that it’s
96% CO2 and 4% N2 , with a temperature of 737 K and a

pressure of 92.0 atm.

78. The air inside a hot-air balloon has a temperature
of 370 K and a pressure of 101.3 kPa, the same as that
of the air outside. Using the composition of air as
78% N2, 21%O2, and 1% Ar , find the density of the air
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inside the balloon.

79. When an air bubble rises from the bottom to the top
of a freshwater lake, its volume increases by 80% . If the

temperatures at the bottom and the top of the lake are 4.0
and 10 °C , respectively, how deep is the lake?

80. (a) Use the ideal gas equation to estimate the
temperature at which 1.00 kg of steam (molar mass

M = 18.0 g/mol ) at a pressure of 1.50 × 106 Pa

occupies a volume of 0.220 m3 . (b) The van der Waals

constants for water are a = 0.5537 Pa · m6 /mol2 and

b = 3.049 × 10−5 m3 /mol . Use the Van der Waals

equation of state to estimate the temperature under the same
conditions. (c) The actual temperature is 779 K. Which
estimate is better?

81. One process for decaffeinating coffee uses carbon
dioxide (M = 44.0 g/mol) at a molar density of about

14,600 mol/m3 and a temperature of about 60 °C . (a) Is

CO2 a solid, liquid, gas, or supercritical fluid under those
conditions? (b) The van der Waals constants for carbon

dioxide are a = 0.3658 Pa · m6 /mol2 and

b = 4.286 × 10−5 m3 /mol. Using the van der Waals

equation, estimate the pressure of CO2 at that temperature

and density.

82. On a winter day when the air temperature is 0 °C,
the relative humidity is 50% . Outside air comes inside

and is heated to a room temperature of 20 °C . What is

the relative humidity of the air inside the room. (Does this
problem show why inside air is so dry in winter?)

83. On a warm day when the air temperature is 30 °C , a

metal can is slowly cooled by adding bits of ice to liquid
water in it. Condensation first appears when the can reaches
15 °C . What is the relative humidity of the air?

84. (a) People often think of humid air as “heavy.”
Compare the densities of air with 0% relative humidity

and 100% relative humidity when both are at 1 atm and

30 °C . Assume that the dry air is an ideal gas composed

of molecules with a molar mass of 29.0 g/mol and the
moist air is the same gas mixed with water vapor. (b) As
discussed in the chapter on the applications of Newton’s
laws, the air resistance felt by projectiles such as baseballs

and golf balls is approximately FD = CρAv2 /2 , where ρ
is the mass density of the air, A is the cross-sectional area of
the projectile, and C is the projectile’s drag coefficient. For
a fixed air pressure, describe qualitatively how the range of
a projectile changes with the relative humidity. (c) When

a thunderstorm is coming, usually the humidity is high
and the air pressure is low. Do those conditions give an
advantage or disadvantage to home-run hitters?

85. The mean free path for helium at a certain temperature

and pressure is 2.10 × 10−7 m. The radius of a helium

atom can be taken as 1.10 × 10−11 m . What is the

measure of the density of helium under those conditions (a)
in molecules per cubic meter and (b) in moles per cubic
meter?

86. The mean free path for methane at a temperature

of 269 K and a pressure of 1.11 × 105 Pa is

4.81 × 10−8 m. Find the effective radius r of the methane

molecule.

87. In the chapter on fluid mechanics, Bernoulli’s equation
for the flow of incompressible fluids was explained in
terms of changes affecting a small volume dV of fluid.
Such volumes are a fundamental idea in the study of the
flow of compressible fluids such as gases as well. For the
equations of hydrodynamics to apply, the mean free path
must be much less than the linear size of such a volume,

a ≈ dV 1/3. For air in the stratosphere at a temperature of

220 K and a pressure of 5.8 kPa, how big should a be for
it to be 100 times the mean free path? Take the effective

radius of air molecules to be 1.88 × 10−11 m, which is

roughly correct for N2 .

88. Find the total number of collisions between molecules
in 1.00 s in 1.00 L of nitrogen gas at standard temperature

and pressure ( 0 °C , 1.00 atm). Use 1.88 × 10−10 m as

the effective radius of a nitrogen molecule. (The number of
collisions per second is the reciprocal of the collision time.)
Keep in mind that each collision involves two molecules,
so if one molecule collides once in a certain period of time,
the collision of the molecule it hit cannot be counted.

89. (a) Estimate the specific heat capacity of sodium from
the Law of Dulong and Petit. The molar mass of sodium is
23.0 g/mol. (b) What is the percent error of your estimate
from the known value, 1230 J/kg · °C ?

90. A sealed, perfectly insulated container contains 0.630
mol of air at 20.0 °C and an iron stirring bar of mass 40.0

g. The stirring bar is magnetically driven to a kinetic energy
of 50.0 J and allowed to slow down by air resistance. What
is the equilibrium temperature?

91. Find the ratio f (vp)/ f (vrms) for hydrogen gas

(M = 2.02 g/mol) at a temperature of 77.0 K.
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92. Unreasonable results. (a) Find the temperature of
0.360 kg of water, modeled as an ideal gas, at a pressure of

1.01 × 105 Pa if it has a volume of 0.615 m3 . (b) What

is unreasonable about this answer? How could you get a
better answer?

93. Unreasonable results. (a) Find the average speed of
hydrogen sulfide, H2 S , molecules at a temperature of 250

K. Its molar mass is 31.4 g/mol (b) The result isn’t very
unreasonable, but why is it less reliable than those for, say,
neon or nitrogen?

CHALLENGE PROBLEMS

94. An airtight dispenser for drinking water is
25 cm × 10 cm in horizontal dimensions and 20 cm tall.

It has a tap of negligible volume that opens at the level of
the bottom of the dispenser. Initially, it contains water to a
level 3.0 cm from the top and air at the ambient pressure,
1.00 atm, from there to the top. When the tap is opened,
water will flow out until the gauge pressure at the bottom
of the dispenser, and thus at the opening of the tap, is 0.
What volume of water flows out? Assume the temperature
is constant, the dispenser is perfectly rigid, and the water

has a constant density of 1000 kg/m3 .

95. Eight bumper cars, each with a mass of 322 kg, are
running in a room 21.0 m long and 13.0 m wide. They have
no drivers, so they just bounce around on their own. The
rms speed of the cars is 2.50 m/s. Repeating the arguments
of Pressure, Temperature, and RMS Speed, find the
average force per unit length (analogous to pressure) that
the cars exert on the walls.

96. Verify that v p = 2kB T
m .

97. Verify the normalization equation ∫
0

∞
f (v)dv = 1.

In doing the integral, first make the substitution

u = m
2kB T v = v

v p
. This “scaling” transformation gives

you all features of the answer except for the integral, which
is a dimensionless numerical factor. You’ll need the
formula

∫
0

∞
x2 e−x2

dx = π
4

to find the numerical factor and verify the normalization.

98. Verify that v̄ = 8
π

kB T
m . Make the same scaling

transformation as in the preceding problem.

99. Verify that vrms = v2
–

= 3kB T
m .
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