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Figure 3.1 A weak cold front of air pushes all the smog in northeastern China into a giant smog blanket over the Yellow Sea,
as captured by NASA’s Terra satellite in 2012. To understand changes in weather and climate, such as the event shown here, you
need a thorough knowledge of thermodynamics. (credit: modification of work by NASA)
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Introduction
Heat is energy in transit, and it can be used to do work. It can also be converted into any other form of energy. A car
engine, for example, burns gasoline. Heat is produced when the burned fuel is chemically transformed into mostly CO2

and H2 O, which are gases at the combustion temperature. These gases exert a force on a piston through a displacement,

doing work and converting the piston’s kinetic energy into a variety of other forms—into the car’s kinetic energy; into
electrical energy to run the spark plugs, radio, and lights; and back into stored energy in the car’s battery.

Energy is conserved in all processes, including those associated with thermodynamic systems. The roles of heat transfer and
internal energy change vary from process to process and affect how work is done by the system in that process. We will see
that the first law of thermodynamics puts a limit on the amount of work that can be delivered by the system when the amount
of internal energy change or heat transfer is constrained. Understanding the laws that govern thermodynamic processes and
the relationship between the system and its surroundings is therefore paramount in gaining scientific knowledge of energy
and energy consumption.

Chapter 3 | The First Law of Thermodynamics 109



3.1 | Thermodynamic Systems

Learning Objectives

By the end of this section, you will be able to:

• Define a thermodynamic system, its boundary, and its surroundings

• Explain the roles of all the components involved in thermodynamics

• Define thermal equilibrium and thermodynamic temperature

• Link an equation of state to a system

A thermodynamic system includes anything whose thermodynamic properties are of interest. It is embedded in its
surroundings or environment; it can exchange heat with, and do work on, its environment through a boundary, which
is the imagined wall that separates the system and the environment (Figure 3.2). In reality, the immediate surroundings
of the system are interacting with it directly and therefore have a much stronger influence on its behavior and properties.
For example, if we are studying a car engine, the burning gasoline inside the cylinder of the engine is the thermodynamic
system; the piston, exhaust system, radiator, and air outside form the surroundings of the system. The boundary then consists
of the inner surfaces of the cylinder and piston.

Figure 3.2 (a) A system, which can include any relevant process or value, is self-contained in an area.
The surroundings may also have relevant information; however, the surroundings are important to study
only if the situation is an open system. (b) The burning gasoline in the cylinder of a car engine is an
example of a thermodynamic system.

Normally, a system must have some interactions with its surroundings. A system is called an isolated or closed system if it
is completely separated from its environment—for example, a gas that is surrounded by immovable and thermally insulating
walls. In reality, a closed system does not exist unless the entire universe is treated as the system, or it is used as a model
for an actual system that has minimal interactions with its environment. Most systems are known as an open system, which
can exchange energy and/or matter with its surroundings (Figure 3.3).
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Figure 3.3 (a) This boiling tea kettle is an open thermodynamic system. It transfers
heat and matter (steam) to its surroundings. (b) A pressure cooker is a good
approximation to a closed system. A little steam escapes through the top valve to prevent
explosion. (credit a: modification of work by Gina Hamilton)

When we examine a thermodynamic system, we ignore the difference in behavior from place to place inside the system for
a given moment. In other words, we concentrate on the macroscopic properties of the system, which are the averages of
the microscopic properties of all the molecules or entities in the system. Any thermodynamic system is therefore treated as
a continuum that has the same behavior everywhere inside. We assume the system is in equilibrium. You could have, for
example, a temperature gradient across the system. However, when we discuss a thermodynamic system in this chapter, we
study those that have uniform properties throughout the system.

Before we can carry out any study on a thermodynamic system, we need a fundamental characterization of the system.
When we studied a mechanical system, we focused on the forces and torques on the system, and their balances dictated
the mechanical equilibrium of the system. In a similar way, we should examine the heat transfer between a thermodynamic
system and its environment or between the different parts of the system, and its balance should dictate the thermal
equilibrium of the system. Intuitively, such a balance is reached if the temperature becomes the same for different objects
or parts of the system in thermal contact, and the net heat transfer over time becomes zero.

Thus, when we say two objects (a thermodynamic system and its environment, for example) are in thermal equilibrium, we
mean that they are at the same temperature, as we discussed in Temperature and Heat. Let us consider three objects at
temperatures T1, T2, and T3, respectively. How do we know whether they are in thermal equilibrium? The governing

principle here is the zeroth law of thermodynamics, as described in Temperature and Heat on temperature and heat:

If object 1 is in thermal equilibrium with objects 2 and 3, respectively, then objects 2 and 3 must also be in thermal
equilibrium.

Mathematically, we can simply write the zeroth law of thermodynamics as

(3.1)If T1 = T2 and T1 = T3, then T2 = T3.

This is the most fundamental way of defining temperature: Two objects must be at the same temperature thermodynamically
if the net heat transfer between them is zero when they are put in thermal contact and have reached a thermal equilibrium.

The zeroth law of thermodynamics is equally applicable to the different parts of a closed system and requires that the
temperature everywhere inside the system be the same if the system has reached a thermal equilibrium. To simplify our
discussion, we assume the system is uniform with only one type of material—for example, water in a tank. The measurable
properties of the system at least include its volume, pressure, and temperature. The range of specific relevant variables
depends upon the system. For example, for a stretched rubber band, the relevant variables would be length, tension, and
temperature. The relationship between these three basic properties of the system is called the equation of state of the system
and is written symbolically for a closed system as
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(3.2)f (p, V , T) = 0,

where V, p, and T are the volume, pressure, and temperature of the system at a given condition.

In principle, this equation of state exists for any thermodynamic system but is not always readily available. The forms of
f (p, V , T) = 0 for many materials have been determined either experimentally or theoretically. In the preceding chapter,

we saw an example of an equation of state for an ideal gas, f (p, V , T) = pV − nRT = 0.

We have so far introduced several physical properties that are relevant to the thermodynamics of a thermodynamic system,
such as its volume, pressure, and temperature. We can separate these quantities into two generic categories. The quantity
associated with an amount of matter is an extensive variable, such as the volume and the number of moles. The other
properties of a system are intensive variables, such as the pressure and temperature. An extensive variable doubles its value
if the amount of matter in the system doubles, provided all the intensive variables remain the same. For example, the volume
or total energy of the system doubles if we double the amount of matter in the system while holding the temperature and
pressure of the system unchanged.

3.2 | Work, Heat, and Internal Energy

Learning Objectives

By the end of this section, you will be able to:

• Describe the work done by a system, heat transfer between objects, and internal energy
change of a system

• Calculate the work, heat transfer, and internal energy change in a simple process

We discussed the concepts of work and energy earlier in mechanics. Examples and related issues of heat transfer between
different objects have also been discussed in the preceding chapters. Here, we want to expand these concepts to a
thermodynamic system and its environment. Specifically, we elaborated on the concepts of heat and heat transfer in the
previous two chapters. Here, we want to understand how work is done by or to a thermodynamic system; how heat is
transferred between a system and its environment; and how the total energy of the system changes under the influence of
the work done and heat transfer.

Work Done by a System
A force created from any source can do work by moving an object through a displacement. Then how does a thermodynamic
system do work? Figure 3.4 shows a gas confined to a cylinder that has a movable piston at one end. If the gas expands
against the piston, it exerts a force through a distance and does work on the piston. If the piston compresses the gas as
it is moved inward, work is also done—in this case, on the gas. The work associated with such volume changes can be
determined as follows: Let the gas pressure on the piston face be p. Then the force on the piston due to the gas is pA, where
A is the area of the face. When the piston is pushed outward an infinitesimal distance dx, the magnitude of the work done
by the gas is

dW = F dx = pA dx.

Since the change in volume of the gas is dV = A dx, this becomes

(3.3)dW = pdV .

For a finite change in volume from V1 to V2, we can integrate this equation from V1 to V2 to find the net work:

(3.4)
W = ∫

V1

V2
pdV .
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Figure 3.4 The work done by a confined gas in moving a
piston a distance dx is given by dW = Fdx = pdV .

This integral is only meaningful for a quasi-static process, which means a process that takes place in infinitesimally small
steps, keeping the system at thermal equilibrium. (We examine this idea in more detail later in this chapter.) Only then does
a well-defined mathematical relationship (the equation of state) exist between the pressure and volume. This relationship
can be plotted on a pV diagram of pressure versus volume, where the curve is the change of state. We can approximate
such a process as one that occurs slowly, through a series of equilibrium states. The integral is interpreted graphically as the
area under the pV curve (the shaded area of Figure 3.5). Work done by the gas is positive for expansion and negative for
compression.

Figure 3.5 When a gas expands slowly from V1 to V2, the

work done by the system is represented by the shaded area under
the pV curve.

Consider the two processes involving an ideal gas that are represented by paths AC and ABC in Figure 3.6. The first
process is an isothermal expansion, with the volume of the gas changing its volume from V1 to V2 . This isothermal process

is represented by the curve between points A and C. The gas is kept at a constant temperature T by keeping it in thermal
equilibrium with a heat reservoir at that temperature. From Equation 3.4 and the ideal gas law,

W = ∫
V1

V2
pdV = ⌠

⌡V1

V2⎛
⎝
nRT

V
⎞
⎠ dV .
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Figure 3.6 The paths ABC, AC, and ADC represent three
different quasi-static transitions between the equilibrium states A
and C.

The expansion is isothermal, so T remains constant over the entire process. Since n and R are also constant, the only variable
in the integrand is V, so the work done by an ideal gas in an isothermal process is

W = nRT⌠
⌡V1

V2dV
V = nRTlnV2

V1
.

Notice that if V2 > V1 (expansion), W is positive, as expected.

The straight lines from A to B and then from B to C represent a different process. Here, a gas at a pressure p1 first expands

isobarically (constant pressure) and quasi-statically from V1 to V2 , after which it cools quasi-statically at the constant

volume V2 until its pressure drops to p2 . From A to B, the pressure is constant at p, so the work over this part of the path

is

W = ∫
V1

V2
pdV = p1∫

V1

V2
dV = p1(V2 − V1).

From B to C, there is no change in volume and therefore no work is done. The net work over the path ABC is then

W = p1(V2 − V1) + 0 = p1(V2 − V1).

A comparison of the expressions for the work done by the gas in the two processes of Figure 3.6 shows that they are quite
different. This illustrates a very important property of thermodynamic work: It is path dependent. We cannot determine the
work done by a system as it goes from one equilibrium state to another unless we know its thermodynamic path. Different
values of the work are associated with different paths.

Example 3.1

Isothermal Expansion of a van der Waals Gas

Studies of a van der Waals gas require an adjustment to the ideal gas law that takes into consideration that gas
molecules have a definite volume (see The Kinetic Theory of Gases). One mole of a van der Waals gas has
an equation of state

⎛
⎝p + a

V 2
⎞
⎠(V − b) = RT ,

where a and b are two parameters for a specific gas. Suppose the gas expands isothermally and quasi-statically
from volume V1 to volume V2. How much work is done by the gas during the expansion?
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3.1

Strategy

Because the equation of state is given, we can use Equation 3.4 to express the pressure in terms of V and T.
Furthermore, temperature T is a constant under the isothermal condition, so V becomes the only changing variable
under the integral.

Solution

To evaluate this integral, we must express p as a function of V. From the given equation of state, the gas pressure
is

p = RT
V − b − a

V 2.

Because T is constant under the isothermal condition, the work done by 1 mol of a van der Waals gas in expanding
from a volume V1 to a volume V2 is thus

W = ⌠
⌡
V1

V2
⎛
⎝

RT
V − b − a

V 2
⎞
⎠ = |RTln(V − b) + a

V |V1

V2

= RTln⎛
⎝

V2 − b
V1 − b

⎞
⎠ + a⎛

⎝
1

V2
− 1

V1

⎞
⎠.

Significance

By taking into account the volume of molecules, the expression for work is much more complex. If, however,
we set a = 0 and b = 0, we see that the expression for work matches exactly the work done by an isothermal

process for one mole of an ideal gas.

Check Your Understanding How much work is done by the gas, as given in Figure 3.6, when it
expands quasi-statically along the path ADC?

Internal Energy
The internal energy Eint of a thermodynamic system is, by definition, the sum of the mechanical energies of all the

molecules or entities in the system. If the kinetic and potential energies of molecule i are Ki and Ui, respectively, then

the internal energy of the system is the average of the total mechanical energy of all the entities:

(3.5)Eint = ∑
i

(K
−

i + U
−

i),

where the summation is over all the molecules of the system, and the bars over K and U indicate average values. The kinetic
energy Ki of an individual molecule includes contributions due to its rotation and vibration, as well as its translational

energy mi vi
2/2, where vi is the molecule’s speed measured relative to the center of mass of the system. The potential

energy Ui is associated only with the interactions between molecule i and the other molecules of the system. In fact, neither

the system’s location nor its motion is of any consequence as far as the internal energy is concerned. The internal energy of
the system is not affected by moving it from the basement to the roof of a 100-story building or by placing it on a moving
train.

In an ideal monatomic gas, each molecule is a single atom. Consequently, there is no rotational or vibrational kinetic energy

and Ki = mi vi
2/2 . Furthermore, there are no interatomic interactions (collisions notwithstanding), so Ui = constant ,

which we set to zero. The internal energy is therefore due to translational kinetic energy only and
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Eint = ∑
i

K
−

i = ∑
i

1
2mi vi

2.

From the discussion in the preceding chapter, we know that the average kinetic energy of a molecule in an ideal monatomic
gas is

1
2mi vi

2
−

= 3
2kB T ,

where T is the Kelvin temperature of the gas. Consequently, the average mechanical energy per molecule of an ideal
monatomic gas is also 3kB T /2, that is,

Ki + Ui = Ki
−

= 3
2kB T .

The internal energy is just the number of molecules multiplied by the average mechanical energy per molecule. Thus for n
moles of an ideal monatomic gas,

(3.6)Eint = nNA
⎛
⎝
3
2kB T⎞

⎠ = 3
2nRT .

Notice that the internal energy of a given quantity of an ideal monatomic gas depends on just the temperature and is
completely independent of the pressure and volume of the gas. For other systems, the internal energy cannot be expressed
so simply. However, an increase in internal energy can often be associated with an increase in temperature.

We know from the zeroth law of thermodynamics that when two systems are placed in thermal contact, they eventually
reach thermal equilibrium, at which point they are at the same temperature. As an example, suppose we mix two monatomic
ideal gases. Now, the energy per molecule of an ideal monatomic gas is proportional to its temperature. Thus, when the two
gases are mixed, the molecules of the hotter gas must lose energy and the molecules of the colder gas must gain energy.
This continues until thermal equilibrium is reached, at which point, the temperature, and therefore the average translational
kinetic energy per molecule, is the same for both gases. The approach to equilibrium for real systems is somewhat more
complicated than for an ideal monatomic gas. Nevertheless, we can still say that energy is exchanged between the systems
until their temperatures are the same.

3.3 | First Law of Thermodynamics

Learning Objectives

By the end of this section, you will be able to:

• State the first law of thermodynamics and explain how it is applied

• Explain how heat transfer, work done, and internal energy change are related in any
thermodynamic process

Now that we have seen how to calculate internal energy, heat, and work done for a thermodynamic system undergoing
change during some process, we can see how these quantities interact to affect the amount of change that can occur. This
interaction is given by the first law of thermodynamics. British scientist and novelist C. P. Snow (1905–1980) is credited
with a joke about the four laws of thermodynamics. His humorous statement of the first law of thermodynamics is stated
“you can’t win,” or in other words, you cannot get more energy out of a system than you put into it. We will see in this
chapter how internal energy, heat, and work all play a role in the first law of thermodynamics.

Suppose Q represents the heat exchanged between a system and the environment, and W is the work done by or on the
system. The first law states that the change in internal energy of that system is given by Q − W . Since added heat increases

the internal energy of a system, Q is positive when it is added to the system and negative when it is removed from the
system.

When a gas expands, it does work and its internal energy decreases. Thus, W is positive when work is done by the system
and negative when work is done on the system. This sign convention is summarized in Table 3.1. The first law of

116 Chapter 3 | The First Law of Thermodynamics

This OpenStax book is available for free at http://cnx.org/content/col12074/1.3



thermodynamics is stated as follows:

First Law of Thermodynamics

Associated with every equilibrium state of a system is its internal energy Eint. The change in Eint for any transition

between two equilibrium states is

(3.7)ΔEint = Q − W

where Q and W represent, respectively, the heat exchanged by the system and the work done by or on the system.

Thermodynamic Sign Conventions for Heat and Work

Process Convention

Heat added to system Q > 0

Heat removed from system Q < 0

Work done by system W > 0

Work done on system W < 0

Table 3.1

The first law is a statement of energy conservation. It tells us that a system can exchange energy with its surroundings
by the transmission of heat and by the performance of work. The net energy exchanged is then equal to the change in the
total mechanical energy of the molecules of the system (i.e., the system’s internal energy). Thus, if a system is isolated, its
internal energy must remain constant.

Although Q and W both depend on the thermodynamic path taken between two equilibrium states, their difference Q − W
does not. Figure 3.7 shows the pV diagram of a system that is making the transition from A to B repeatedly along different
thermodynamic paths. Along path 1, the system absorbs heat Q1 and does work W1; along path 2, it absorbs heat Q2

and does work W2, and so on. The values of Qi and Wi may vary from path to path, but we have

Q1 − W1 = Q2 − W2 = ⋯ = Qi − Wi = ⋯,

or

ΔEint1 = ΔEint2 = ⋯ = ΔEinti = ⋯.

That is, the change in the internal energy of the system between A and B is path independent. In the chapter on potential
energy and the conservation of energy, we encountered another path-independent quantity: the change in potential energy
between two arbitrary points in space. This change represents the negative of the work done by a conservative force
between the two points. The potential energy is a function of spatial coordinates, whereas the internal energy is a function
of thermodynamic variables. For example, we might write Eint(T , p) for the internal energy. Functions such as internal

energy and potential energy are known as state functions because their values depend solely on the state of the system.
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Figure 3.7 Different thermodynamic paths taken by a system
in going from state A to state B. For all transitions, the change in
the internal energy of the system ΔEint = Q − W is the same.

Often the first law is used in its differential form, which is

(3.8)dEint = dQ − dW.

Here dEint is an infinitesimal change in internal energy when an infinitesimal amount of heat dQ is exchanged with the

system and an infinitesimal amount of work dW is done by (positive in sign) or on (negative in sign) the system.

Example 3.2

Changes of State and the First Law

During a thermodynamic process, a system moves from state A to state B, it is supplied with 400 J of heat and
does 100 J of work. (a) For this transition, what is the system’s change in internal energy? (b) If the system then
moves from state B back to state A, what is its change in internal energy? (c) If in moving from A to B along a
different path, W′AB = 400 J of work is done on the system, how much heat does it absorb?

Strategy

The first law of thermodynamics relates the internal energy change, work done by the system, and the heat
transferred to the system in a simple equation. The internal energy is a function of state and is therefore fixed at
any given point regardless of how the system reaches the state.

Solution
a. From the first law, the change in the system’s internal energy is

ΔEintAB = QAB − WAB = 400 J − 100 J = 300 J.

b. Consider a closed path that passes through the states A and B. Internal energy is a state function, so ΔEint

is zero for a closed path. Thus

ΔEint = ΔEintAB + ΔEintBA = 0,

and

ΔEintAB = −ΔEintBA.

This yields

ΔEintBA = −300 J.

c. The change in internal energy is the same for any path, so
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ΔEintAB = ΔE′intAB = Q′AB – W′AB;
300 J = Q′AB – (−400 J),

and the heat exchanged is

Q′AB = −100 J.

The negative sign indicates that the system loses heat in this transition.

Significance

When a closed cycle is considered for the first law of thermodynamics, the change in internal energy around the
whole path is equal to zero. If friction were to play a role in this example, less work would result from this heat
added. Example 3.3 takes into consideration what happens if friction plays a role.

Notice that in Example 3.2, we did not assume that the transitions were quasi-static. This is because the first law is not
subject to such a restriction. It describes transitions between equilibrium states but is not concerned with the intermediate
states. The system does not have to pass through only equilibrium states. For example, if a gas in a steel container at a
well-defined temperature and pressure is made to explode by means of a spark, some of the gas may condense, different gas
molecules may combine to form new compounds, and there may be all sorts of turbulence in the container—but eventually,
the system will settle down to a new equilibrium state. This system is clearly not in equilibrium during its transition;
however, its behavior is still governed by the first law because the process starts and ends with the system in equilibrium
states.

Example 3.3

Polishing a Fitting

A machinist polishes a 0.50-kg copper fitting with a piece of emery cloth for 2.0 min. He moves the cloth across
the fitting at a constant speed of 1.0 m/s by applying a force of 20 N, tangent to the surface of the fitting. (a) What
is the total work done on the fitting by the machinist? (b) What is the increase in the internal energy of the fitting?
Assume that the change in the internal energy of the cloth is negligible and that no heat is exchanged between the
fitting and its environment. (c) What is the increase in the temperature of the fitting?

Strategy

The machinist’s force over a distance that can be calculated from the speed and time given is the work done on
the system. The work, in turn, increases the internal energy of the system. This energy can be interpreted as the
heat that raises the temperature of the system via its heat capacity. Be careful with the sign of each quantity.

Solution
a. The power created by a force on an object or the rate at which the machinist does frictional work on the

fitting is F→ · v→ = −Fv . Thus, in an elapsed time Δt (2.0 min), the work done on the fitting is

W = −FvΔt = −(20 N)(0.1 m/s)(1.2 × 102 s)
= −2.4 × 103 J.

b. By assumption, no heat is exchanged between the fitting and its environment, so the first law gives for
the change in the internal energy of the fitting:

ΔEint = −W = 2.4 × 103 J.

c. Since ΔEint is path independent, the effect of the 2.4 × 103 J of work is the same as if it were supplied

at atmospheric pressure by a transfer of heat. Thus,

2.4 × 103 J = mcΔT = (0.50 kg)(3.9 × 102 J/kg · °C)ΔT ,

and the increase in the temperature of the fitting is
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3.2

ΔT = 12 °C,

where we have used the value for the specific heat of copper, c = 3.9 × 102 J/kg · °C .

Significance

If heat were released, the change in internal energy would be less and cause less of a temperature change than
what was calculated in the problem.

Check Your Understanding The quantities below represent four different transitions between the same
initial and final state. Fill in the blanks.

Q (J) W (J) ΔEint(J)

–80 –120

90

40

–40

Table 3.2

Example 3.4

An Ideal Gas Making Transitions between Two States

Consider the quasi-static expansions of an ideal gas between the equilibrium states A and C of Figure 3.6. If
515 J of heat are added to the gas as it traverses the path ABC, how much heat is required for the transition

along ADC? Assume that p1 = 2.10 × 105 N/m2 , p2 = 1.05 × 105 N/m2 , V1 = 2.25 × 10−3 m3 , and

V2 = 4.50 × 10−3 m3.

Strategy

The difference in work done between process ABC and process ADC is the area enclosed by ABCD. Because the
change of the internal energy (a function of state) is the same for both processes, the difference in work is thus
the same as the difference in heat transferred to the system.

Solution

For path ABC, the heat added is QABC = 515 J and the work done by the gas is the area under the path on the

pV diagram, which is

WABC = p1(V2 − V1) = 473 J.

Along ADC, the work done by the gas is again the area under the path:

WADC = p2(V2 − V1) = 236 J.

Then using the strategy we just described, we have

QADC − QABC = WADC − WABC,

which leads to

QADC = QABC + WADC − WABC = (515 + 236 − 473) J = 278 J.

Significance

The work calculations in this problem are made simple since no work is done along AD and BC and along AB and
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3.3

DC; the pressure is constant over the volume change, so the work done is simply pΔV . An isothermal line could

also have been used, as we have derived the work for an isothermal process as W = nRTlnV2
V1

.

Example 3.5

Isothermal Expansion of an Ideal Gas

Heat is added to 1 mol of an ideal monatomic gas confined to a cylinder with a movable piston at one end. The
gas expands quasi-statically at a constant temperature of 300 K until its volume increases from V to 3V. (a) What
is the change in internal energy of the gas? (b) How much work does the gas do? (c) How much heat is added to
the gas?

Strategy

(a) Because the system is an ideal gas, the internal energy only changes when the temperature changes. (b) The
heat added to the system is therefore purely used to do work that has been calculated in Work, Heat, and
Internal Energy. (c) Lastly, the first law of thermodynamics can be used to calculate the heat added to the gas.

Solution
a. We saw in the preceding section that the internal energy of an ideal monatomic gas is a function only of

temperature. Since ΔT = 0 , for this process, ΔEint = 0.

b. The quasi-static isothermal expansion of an ideal gas was considered in the preceding section and was
found to be

W = nRTlnV2
V1

= nRTln3V
V

= (1.00 mol)(8.314 J/K · mol)(300 K)(ln3) = 2.74 × 103 J.

c. With the results of parts (a) and (b), we can use the first law to determine the heat added:

ΔEint = Q − W = 0,

which leads to

Q = W = 2.74 × 103 J.

Significance

An isothermal process has no change in the internal energy. Based on that, the first law of thermodynamics
reduces to Q = W .

Check Your Understanding Why was it necessary to state that the process of Example 3.5 is quasi-
static?

Example 3.6

Vaporizing Water

When 1.00 g of water at 100 °C changes from the liquid to the gas phase at atmospheric pressure, its change in

volume is 1.67 × 10−3 m3 . (a) How much heat must be added to vaporize the water? (b) How much work is

done by the water against the atmosphere in its expansion? (c) What is the change in the internal energy of the
water?
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3.4

Strategy

We can first figure out how much heat is needed from the latent heat of vaporization of the water. From the
volume change, we can calculate the work done from W = pΔV because the pressure is constant. Then, the first

law of thermodynamics provides us with the change in the internal energy.

Solution
a. With Lv representing the latent heat of vaporization, the heat required to vaporize the water is

Q = mLv = (1.00 g)(2.26 × 103 J/g) = 2.26 × 103 J.

b. Since the pressure on the system is constant at 1.00 atm = 1.01 × 105 N/m2 , the work done by the

water as it is vaporized is

W = pΔV = (1.01 × 105 N/m2)(1.67 × 10−3 m3) = 169 J.

c. From the first law, the thermal energy of the water during its vaporization changes by

ΔEint = Q − W = 2.26 × 103 J − 169 J = 2.09 × 103 J.

Significance

We note that in part (c), we see a change in internal energy, yet there is no change in temperature. Ideal gases that
are not undergoing phase changes have the internal energy proportional to temperature. Internal energy in general
is the sum of all energy in the system.

Check Your Understanding When 1.00 g of ammonia boils at atmospheric pressure and −33.0 °C, its

volume changes from 1.47 to 1130 cm3 . Its heat of vaporization at this pressure is 1.37 × 106 J/kg. What is

the change in the internal energy of the ammonia when it vaporizes?

View this site (https://openstaxcollege.org/l/211stlawthermo) to learn about how the first law of
thermodynamics. First, pump some heavy species molecules into the chamber. Then, play around by doing work
(pushing the wall to the right where the person is located) to see how the internal energy changes (as seen by
temperature). Then, look at how heat added changes the internal energy. Finally, you can set a parameter constant
such as temperature and see what happens when you do work to keep the temperature constant (Note: You might
see a change in these variables initially if you are moving around quickly in the simulation, but ultimately, this
value will return to its equilibrium value).

3.4 | Thermodynamic Processes

Learning Objectives

By the end of this section, you will be able to:

• Define a thermodynamic process

• Distinguish between quasi-static and non-quasi-static processes

• Calculate physical quantities, such as the heat transferred, work done, and internal energy
change for isothermal, adiabatic, and cyclical thermodynamic processes

In solving mechanics problems, we isolate the body under consideration, analyze the external forces acting on it, and then
use Newton’s laws to predict its behavior. In thermodynamics, we take a similar approach. We start by identifying the part
of the universe we wish to study; it is also known as our system. (We defined a system at the beginning of this chapter as
anything whose properties are of interest to us; it can be a single atom or the entire Earth.) Once our system is selected,
we determine how the environment, or surroundings, interact with the system. Finally, with the interaction understood, we
study the thermal behavior of the system with the help of the laws of thermodynamics.
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The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables are
pressure, volume, temperature, and the number of molecules or moles of the gas. Different types of systems are generally
characterized by different sets of variables. For example, the thermodynamic variables for a stretched rubber band are
tension, length, temperature, and mass.

The state of a system can change as a result of its interaction with the environment. The change in a system can be fast or
slow and large or small. The manner in which a state of a system can change from an initial state to a final state is called
a thermodynamic process. For analytical purposes in thermodynamics, it is helpful to divide up processes as either quasi-
static or non-quasi-static, as we now explain.

Quasi-static and Non-quasi-static Processes
A quasi-static process refers to an idealized or imagined process where the change in state is made infinitesimally slowly so
that at each instant, the system can be assumed to be at a thermodynamic equilibrium with itself and with the environment.
For instance, imagine heating 1 kg of water from a temperature 20 °C to 21 °C at a constant pressure of 1 atmosphere. To

heat the water very slowly, we may imagine placing the container with water in a large bath that can be slowly heated such
that the temperature of the bath can rise infinitesimally slowly from 20 °C to 21 °C . If we put 1 kg of water at 20 °C
directly into a bath at 21 °C , the temperature of the water will rise rapidly to 21 °C in a non-quasi-static way.

Quasi-static processes are done slowly enough that the system remains at thermodynamic equilibrium at each instant,
despite the fact that the system changes over time. The thermodynamic equilibrium of the system is necessary for the system
to have well-defined values of macroscopic properties such as the temperature and the pressure of the system at each instant
of the process. Therefore, quasi-static processes can be shown as well-defined paths in state space of the system.

Since quasi-static processes cannot be completely realized for any finite change of the system, all processes in nature
are non-quasi-static. Examples of quasi-static and non-quasi-static processes are shown in Figure 3.8. Despite the fact
that all finite changes must occur essentially non-quasi-statically at some stage of the change, we can imagine performing
infinitely many quasi-static process corresponding to every quasi-static process. Since quasi-static processes can be
analyzed analytically, we mostly study quasi-static processes in this book. We have already seen that in a quasi-static process
the work by a gas is given by pdV.

Figure 3.8 Quasi-static and non-quasi-static processes
between states A and B of a gas. In a quasi-static process, the
path of the process between A and B can be drawn in a state
diagram since all the states that the system goes through are
known. In a non-quasi-static process, the states between A and B
are not known, and hence no path can be drawn. It may follow
the dashed line as shown in the figure or take a very different
path.

Isothermal Processes
An isothermal process is a change in the state of the system at a constant temperature. This process is accomplished by
keeping the system in thermal equilibrium with a large heat bath during the process. Recall that a heat bath is an idealized
“infinitely” large system whose temperature does not change. In practice, the temperature of a finite bath is controlled by
either adding or removing a finite amount of energy as the case may be.

As an illustration of an isothermal process, consider a cylinder of gas with a movable piston immersed in a large water tank
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whose temperature is maintained constant. Since the piston is freely movable, the pressure inside Pin is balanced by the

pressure outside Pout by some weights on the piston, as in Figure 3.9.

Figure 3.9 Expanding a system at a constant temperature. Removing weights on
the piston leads to an imbalance of forces on the piston, which causes the piston to
move up. As the piston moves up, the temperature is lowered momentarily, which
causes heat to flow from the heat bath to the system. The energy to move the piston
eventually comes from the heat bath.

As weights on the piston are removed, an imbalance of forces on the piston develops. The net nonzero force on the piston
would cause the piston to accelerate, resulting in an increase in volume. The expansion of the gas cools the gas to a lower
temperature, which makes it possible for the heat to enter from the heat bath into the system until the temperature of the
gas is reset to the temperature of the heat bath. If weights are removed in infinitesimal steps, the pressure in the system
decreases infinitesimally slowly. This way, an isothermal process can be conducted quasi-statically. An isothermal line on
a (p, V) diagram is represented by a curved line from starting point A to finishing point B, as seen in Figure 3.10. For an

ideal gas, an isothermal process is hyperbolic, since for an ideal gas at constant temperature, p ∝ 1
V .

Figure 3.10 An isothermal expansion from a state labeled A
to another state labeled B on a pV diagram. The curve represents
the relation between pressure and volume in an ideal gas at
constant temperature.

An isothermal process studied in this chapter is quasi-statically performed, since to be isothermal throughout the change
of volume, you must be able to state the temperature of the system at each step, which is possible only if the system is
in thermal equilibrium continuously. The system must go out of equilibrium for the state to change, but for quasi-static
processes, we imagine that the process is conducted in infinitesimal steps such that these departures from equilibrium can
be made as brief and as small as we like.

Other quasi-static processes of interest for gases are isobaric and isochoric processes. An isobaric process is a process
where the pressure of the system does not change, whereas an isochoric process is a process where the volume of the
system does not change.

Adiabatic Processes
In an adiabatic process, the system is insulated from its environment so that although the state of the system changes,
no heat is allowed to enter or leave the system, as seen in Figure 3.11. An adiabatic process can be conducted either
quasi-statically or non-quasi-statically. When a system expands adiabatically, it must do work against the outside world, and
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therefore its energy goes down, which is reflected in the lowering of the temperature of the system. An adiabatic expansion
leads to a lowering of temperature, and an adiabatic compression leads to an increase of temperature. We discuss adiabatic
expansion again in Adiabatic Processes for an ideal Gas.

Figure 3.11 An insulated piston with a hot, compressed gas is
released. The piston moves up, the volume expands, and the
pressure and temperature decrease. The internal energy goes into
work. If the expansion occurs within a time frame in which
negligible heat can enter the system, then the process is called
adiabatic. Ideally, during an adiabatic process no heat enters or
exits the system.

Cyclic Processes
We say that a system goes through a cyclic process if the state of the system at the end is same as the state at the beginning.
Therefore, state properties such as temperature, pressure, volume, and internal energy of the system do not change over a
complete cycle:

ΔEint = 0.

When the first law of thermodynamics is applied to a cyclic process, we obtain a simple relation between heat into the
system and the work done by the system over the cycle:

Q = W ⎛
⎝cyclic process⎞

⎠.

Thermodynamic processes are also distinguished by whether or not they are reversible. A reversible process is one that can
be made to retrace its path by differential changes in the environment. Such a process must therefore also be quasi-static.
Note, however, that a quasi-static process is not necessarily reversible, since there may be dissipative forces involved. For
example, if friction occurred between the piston and the walls of the cylinder containing the gas, the energy lost to friction
would prevent us from reproducing the original states of the system.

We considered several thermodynamic processes:

1. An isothermal process, during which the system’s temperature remains constant

2. An adiabatic process, during which no heat is transferred to or from the system

3. An isobaric process, during which the system’s pressure does not change

4. An isochoric process, during which the system’s volume does not change

Many other processes also occur that do not fit into any of these four categories.

View this site (https://openstaxcollege.org/l/21idegaspvdiag) to set up your own process in a pV diagram.
See if you can calculate the values predicted by the simulation for heat, work, and change in internal energy.
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3.5 | Heat Capacities of an Ideal Gas

Learning Objectives

By the end of this section, you will be able to:

• Define heat capacity of an ideal gas for a specific process

• Calculate the specific heat of an ideal gas for either an isobaric or isochoric process

• Explain the difference between the heat capacities of an ideal gas and a real gas

• Estimate the change in specific heat of a gas over temperature ranges

We learned about specific heat and molar heat capacity in Temperature and Heat; however, we have not considered a
process in which heat is added. We do that in this section. First, we examine a process where the system has a constant
volume, then contrast it with a system at constant pressure and show how their specific heats are related.

Let’s start with looking at Figure 3.12, which shows two vessels A and B, each containing 1 mol of the same type of ideal
gas at a temperature T and a volume V. The only difference between the two vessels is that the piston at the top of A is fixed,
whereas the one at the top of B is free to move against a constant external pressure p. We now consider what happens when
the temperature of the gas in each vessel is slowly increased to T + dT with the addition of heat.

Figure 3.12 Two vessels are identical except that the piston at
the top of A is fixed, whereas that atop B is free to move against
a constant external pressure p.

Since the piston of vessel A is fixed, the volume of the enclosed gas does not change. Consequently, the gas does no work,
and we have from the first law

dEint = dQ − dW = dQ.

We represent the fact that the heat is exchanged at constant volume by writing

dQ = CV dT ,

where CV is the molar heat capacity at constant volume of the gas. In addition, since dEint = dQ for this particular

process,

(3.9)dEint = CV dT .

We obtained this equation assuming the volume of the gas was fixed. However, internal energy is a state function that
depends on only the temperature of an ideal gas. Therefore, dEint = CV dT gives the change in internal energy of an ideal

gas for any process involving a temperature change dT.

When the gas in vessel B is heated, it expands against the movable piston and does work dW = pdV . In this case, the heat

is added at constant pressure, and we write

dQ = C p dT ,
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where C p is the molar heat capacity at constant pressure of the gas. Furthermore, since the ideal gas expands against a

constant pressure,

d(pV) = d(RT)

becomes

pdV = RdT .

Finally, inserting the expressions for dQ and pdV into the first law, we obtain

dEint = dQ − pdV = (C p − R)dT .

We have found dEint for both an isochoric and an isobaric process. Because the internal energy of an ideal gas depends

only on the temperature, dEint must be the same for both processes. Thus,

CV dT = (C p − R)dT ,

and

(3.10)C p = CV + R.

The derivation of Equation 3.10 was based only on the ideal gas law. Consequently, this relationship is approximately
valid for all dilute gases, whether monatomic like He, diatomic like O2, or polyatomic like CO2 or NH3 .

In the preceding chapter, we found the molar heat capacity of an ideal gas under constant volume to be

CV = d
2R,

where d is the number of degrees of freedom of a molecule in the system. Table 3.3 shows the molar heat capacities of
some dilute ideal gases at room temperature. The heat capacities of real gases are somewhat higher than those predicted by
the expressions of CV and C p given in Equation 3.10. This indicates that vibrational motion in polyatomic molecules

is significant, even at room temperature. Nevertheless, the difference in the molar heat capacities, C p − CV, is very close

to R, even for the polyatomic gases.

Molar Heat Capacities of Dilute Ideal Gases at Room Temperature

Type of Molecule Gas C p

(J/mol K)

CV

(J/mol K)

C p − CV

(J/mol K)

Monatomic Ideal 5
2R = 20.79 3

2R = 12.47 R = 8.31

Diatomic Ideal 7
2R = 29.10 5

2R = 20.79 R = 8.31

Polyatomic Ideal 4R = 33.26 3R = 24.94 R = 8.31

Table 3.3
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3.6 | Adiabatic Processes for an Ideal Gas

Learning Objectives

By the end of this section, you will be able to:

• Define adiabatic expansion of an ideal gas

• Demonstrate the qualitative difference between adiabatic and isothermal expansions

When an ideal gas is compressed adiabatically (Q = 0), work is done on it and its temperature increases; in an adiabatic

expansion, the gas does work and its temperature drops. Adiabatic compressions actually occur in the cylinders of a car,
where the compressions of the gas-air mixture take place so quickly that there is no time for the mixture to exchange heat
with its environment. Nevertheless, because work is done on the mixture during the compression, its temperature does rise
significantly. In fact, the temperature increases can be so large that the mixture can explode without the addition of a spark.
Such explosions, since they are not timed, make a car run poorly—it usually “knocks.” Because ignition temperature rises
with the octane of gasoline, one way to overcome this problem is to use a higher-octane gasoline.

Another interesting adiabatic process is the free expansion of a gas. Figure 3.13 shows a gas confined by a membrane to
one side of a two-compartment, thermally insulated container. When the membrane is punctured, gas rushes into the empty
side of the container, thereby expanding freely. Because the gas expands “against a vacuum” (p = 0) , it does no work, and

because the vessel is thermally insulated, the expansion is adiabatic. With Q = 0 and W = 0 in the first law, ΔEint = 0,
so Eint i = Eint f for the free expansion.

Figure 3.13 The gas in the left chamber expands freely into the right chamber when the membrane is punctured.

If the gas is ideal, the internal energy depends only on the temperature. Therefore, when an ideal gas expands freely, its
temperature does not change.

A quasi-static, adiabatic expansion of an ideal gas is represented in Figure 3.14, which shows an insulated cylinder that
contains 1 mol of an ideal gas. The gas is made to expand quasi-statically by removing one grain of sand at a time from
the top of the piston. When the gas expands by dV, the change in its temperature is dT. The work done by the gas in the
expansion is dW = pdV; dQ = 0 because the cylinder is insulated; and the change in the internal energy of the gas is,

from Equation 3.9, dEint = CV dT . Therefore, from the first law,

CV dT = 0 − pdV = −pdV ,

so

dT = − pdV
CV

.
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Figure 3.14 When sand is removed from the piston one grain
at a time, the gas expands adiabatically and quasi-statically in
the insulated vessel.

Also, for 1 mol of an ideal gas,

d(pV) = d(RT),

so

pdV + Vdp = RdT

and

dT = pdV + Vdp
R .

We now have two equations for dT. Upon equating them, we find that

CV Vdp + (CV + R)pdV = 0.

Now, we divide this equation by pV and use C p = CV + R . We are then left with

CV
dp
p + C p

dV
V = 0,

which becomes

dp
p + γdV

V = 0,

where we define γ as the ratio of the molar heat capacities:

(3.11)
γ =

C p
CV

.
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Thus,

⌠
⌡

dp
p + γ⌠

⌡
dV
V = 0

and

ln p + γln V = constant.

Finally, using ln(Ax) = xlnA and ln AB = ln A + ln B , we can write this in the form

(3.12)pV γ = constant.

This equation is the condition that must be obeyed by an ideal gas in a quasi-static adiabatic process. For example, if an
ideal gas makes a quasi-static adiabatic transition from a state with pressure and volume p1 and V1 to a state with p2

and V2, then it must be true that p1 V1
γ = p2 V2

γ.

The adiabatic condition of Equation 3.12 can be written in terms of other pairs of thermodynamic variables by combining
it with the ideal gas law. In doing this, we find that

(3.13)p1 − γ T γ = constant

and

(3.14)TV γ − 1 = constant.

A reversible adiabatic expansion of an ideal gas is represented on the pV diagram of Figure 3.15. The slope of the curve
at any point is

dp
dV = d

dV
⎛
⎝
constant

V γ
⎞
⎠ = −γ p

V .

Figure 3.15 Quasi-static adiabatic and isothermal expansions
of an ideal gas.

The dashed curve shown on this pV diagram represents an isothermal expansion where T (and therefore pV) is constant. The
slope of this curve is useful when we consider the second law of thermodynamics in the next chapter. This slope is

dp
dV = d

dV
nRT

V = − p
V .

Because γ > 1, the isothermal curve is not as steep as that for the adiabatic expansion.
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Example 3.7

Compression of an Ideal Gas in an Automobile Engine

Gasoline vapor is injected into the cylinder of an automobile engine when the piston is in its expanded position.

The temperature, pressure, and volume of the resulting gas-air mixture are 20 °C , 1.00 × 105 N/m2 , and

240 cm3 , respectively. The mixture is then compressed adiabatically to a volume of 40 cm3 . Note that in

the actual operation of an automobile engine, the compression is not quasi-static, although we are making that
assumption here. (a) What are the pressure and temperature of the mixture after the compression? (b) How much
work is done by the mixture during the compression?

Strategy

Because we are modeling the process as a quasi-static adiabatic compression of an ideal gas, we have

pV γ = constant and pV = nRT . The work needed can then be evaluated with W = ∫
V1

V2
pdV .

Solution
a. For an adiabatic compression we have

p2 = p1
⎛
⎝
V1
V2

⎞
⎠

γ
,

so after the compression, the pressure of the mixture is

p2 = (1.00 × 105 N/m2)⎛⎝
240 × 10−6 m3

40 × 10−6 m3
⎞
⎠

1.40
= 1.23 × 106 N/m2 .

From the ideal gas law, the temperature of the mixture after the compression is

T2 = ⎛
⎝

p2 V2
p1 V1

⎞
⎠T1

= (1.23 × 106 N/m2)(40 × 10−6 m3)
(1.00 × 105 N/m2)(240 × 10−6 m3)

· 293 K

= 600 K = 328 °C.

b. The work done by the mixture during the compression is

W = ∫
V1

V2
pdV .

With the adiabatic condition of Equation 3.12, we may write p as K/V γ, where K = p1 V1
γ = p2 V2

γ.

The work is therefore

Chapter 3 | The First Law of Thermodynamics 131



W = ⌠
⌡V1

V2
K
V γdV

= K
1 − γ

⎛

⎝
⎜ 1
V2

γ − 1 − 1
V1

γ − 1

⎞

⎠
⎟

= 1
1 − γ

⎛

⎝
⎜ p2 V2

γ

V2
γ − 1 −

p1 V1
γ

V1
γ − 1

⎞

⎠
⎟

= 1
1 − γ(p2 V2 − p1 V1)

= 1
1 − 1.40[(1.23 × 106 N/m2)(40 × 10−6 m3)

−(1.00 × 105 N/m2)(240 × 10−6 m3)]
= −63 J.

Significance

The negative sign on the work done indicates that the piston does work on the gas-air mixture. The engine would
not work if the gas-air mixture did work on the piston.
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adiabatic process

boundary

closed system

cyclic process

environment

equation of state

equilibrium

extensive variable

first law of thermodynamics

intensive variable

internal energy

isobaric process

isochoric process

isothermal process

molar heat capacity at constant pressure

molar heat capacity at constant volume

open system

quasi-static process

reversible process

surroundings

thermodynamic process

thermodynamic system

CHAPTER 3 REVIEW

KEY TERMS
process during which no heat is transferred to or from the system

imagined walls that separate the system and its surroundings

system that is mechanically and thermally isolated from its environment

process in which the state of the system at the end is same as the state at the beginning

outside of the system being studied

describes properties of matter under given physical conditions

thermal balance established between two objects or parts within a system

variable that is proportional to the amount of matter in the system

the change in internal energy for any transition between two equilibrium states is
ΔEint = Q − W

variable that is independent of the amount of matter in the system

average of the total mechanical energy of all the molecules or entities in the system

process during which the system’s pressure does not change

process during which the system’s volume does not change

process during which the system’s temperature remains constant

quantifies the ratio of the amount of heat added removed to the
temperature while measuring at constant pressure

quantifies the ratio of the amount of heat added removed to the
temperature while measuring at constant volume

system that can exchange energy and/or matter with its surroundings

evolution of a system that goes so slowly that the system involved is always in thermodynamic
equilibrium

process that can be reverted to restore both the system and its environment back to their original
states together

environment that interacts with an open system

manner in which a state of a system can change from initial state to final state

object and focus of thermodynamic study

KEY EQUATIONS
Equation of state for a closed system f (p, V , T) = 0

Net work for a finite change in volume
W = ∫

V1

V2
pdV

Internal energy of a system (average total energy) Eint = ∑
i

(K̄ i + Ū i),

Internal energy of a monatomic ideal gas Eint = nNA
⎛
⎝
3
2kB T⎞

⎠ = 3
2nRT

First law of thermodynamics ΔEint = Q − W
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Molar heat capacity at constant pressure C p = CV + R

Ratio of molar heat capacities γ = C p /CV

Condition for an ideal gas in a quasi-static adiabatic process pV γ = constant

SUMMARY

3.1 Thermodynamic Systems

• A thermodynamic system, its boundary, and its surroundings must be defined with all the roles of the components
fully explained before we can analyze a situation.

• Thermal equilibrium is reached with two objects if a third object is in thermal equilibrium with the other two
separately.

• A general equation of state for a closed system has the form f (p, V , T) = 0, with an ideal gas as an illustrative

example.

3.2 Work, Heat, and Internal Energy

• Positive (negative) work is done by a thermodynamic system when it expands (contracts) under an external pressure.

• Heat is the energy transferred between two objects (or two parts of a system) because of a temperature difference.

• Internal energy of a thermodynamic system is its total mechanical energy.

3.3 First Law of Thermodynamics

• The internal energy of a thermodynamic system is a function of state and thus is unique for every equilibrium state
of the system.

• The increase in the internal energy of the thermodynamic system is given by the heat added to the system less the
work done by the system in any thermodynamics process.

3.4 Thermodynamic Processes

• The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables
are pressure, volume, temperature, and number of molecules or moles of the gas.

• For systems in thermodynamic equilibrium, the thermodynamic variables are related by an equation of state.

• A heat reservoir is so large that when it exchanges heat with other systems, its temperature does not change.

• A quasi-static process takes place so slowly that the system involved is always in thermodynamic equilibrium.

• A reversible process is one that can be made to retrace its path and both the temperature and pressure are uniform
throughout the system.

• There are several types of thermodynamic processes, including (a) isothermal, where the system’s temperature is
constant; (b) adiabatic, where no heat is exchanged by the system; (c) isobaric, where the system’s pressure is
constant; and (d) isochoric, where the system’s volume is constant.

• As a consequence of the first law of thermodymanics, here is a summary of the thermodymaic processes: (a)
isothermal: ΔEint = 0, Q = W; (b) adiabatic: Q = 0, ΔEint = −W; (c) isobaric: ΔEint = Q − W; and (d)

isochoric: W = 0, ΔEint = Q.

3.5 Heat Capacities of an Ideal Gas

• For an ideal gas, the molar capacity at constant pressure C p is given by C p = CV + R = dR/2 + R , where d is

the number of degrees of freedom of each molecule/entity in the system.

• A real gas has a specific heat close to but a little bit higher than that of the corresponding ideal gas with
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C p ≃ CV + R.

3.6 Adiabatic Processes for an Ideal Gas

• A quasi-static adiabatic expansion of an ideal gas produces a steeper pV curve than that of the corresponding
isotherm.

• A realistic expansion can be adiabatic but rarely quasi-static.

CONCEPTUAL QUESTIONS

3.1 Thermodynamic Systems

1. Consider these scenarios and state whether work is
done by the system on the environment (SE) or by the
environment on the system (ES): (a) opening a carbonated
beverage; (b) filling a flat tire; (c) a sealed empty gas can
expands on a hot day, bowing out the walls.

3.2 Work, Heat, and Internal Energy

2. Is it possible to determine whether a change in internal
energy is caused by heat transferred, by work performed, or
by a combination of the two?

3. When a liquid is vaporized, its change in internal energy
is not equal to the heat added. Why?

4. Why does a bicycle pump feel warm as you inflate your
tire?

5. Is it possible for the temperature of a system to remain
constant when heat flows into or out of it? If so, give
examples.

3.3 First Law of Thermodynamics

6. What does the first law of thermodynamics tell us about
the energy of the universe?

7. Does adding heat to a system always increase its
internal energy?

8. A great deal of effort, time, and money has been spent
in the quest for a so-called perpetual-motion machine,
which is defined as a hypothetical machine that operates
or produces useful work indefinitely and/or a hypothetical
machine that produces more work or energy than it
consumes. Explain, in terms of the first law of
thermodynamics, why or why not such a machine is likely
to be constructed.

3.4 Thermodynamic Processes

9. When a gas expands isothermally, it does work. What is

the source of energy needed to do this work?

10. If the pressure and volume of a system are given, is the
temperature always uniquely determined?

11. It is unlikely that a process can be isothermal unless
it is a very slow process. Explain why. Is the same true for
isobaric and isochoric processes? Explain your answer.

3.5 Heat Capacities of an Ideal Gas

12. How can an object transfer heat if the object does not
possess a discrete quantity of heat?

13. Most materials expand when heated. One notable
exception is water between 0 °C and 4 °C, which actually

decreases in volume with the increase in temperature.
Which is greater for water in this temperature region, C p

or CV ?

14. Why are there two specific heats for gases C p and

CV , yet only one given for solid?

3.6 Adiabatic Processes for an Ideal Gas

15. Is it possible for γ to be smaller than unity?

16. Would you expect γ to be larger for a gas or a solid?

Explain.

17. There is no change in the internal energy of an ideal
gas undergoing an isothermal process since the internal
energy depends only on the temperature. Is it therefore
correct to say that an isothermal process is the same as an
adiabatic process for an ideal gas? Explain your answer.

18. Does a gas do any work when it expands
adiabatically? If so, what is the source of the energy needed
to do this work?

Chapter 3 | The First Law of Thermodynamics 135



PROBLEMS

3.1 Thermodynamic Systems

19. A gas follows pV = bp + cT on an isothermal curve,

where p is the pressure, V is the volume, b is a constant,
and c is a function of temperature. Show that a temperature
scale under an isochoric process can be established with
this gas and is identical to that of an ideal gas.

20. A mole of gas has isobaric expansion coefficient
dV /dT = R/p and isochoric pressure-temperature

coefficient dp/dT = p/T . Find the equation of state of the

gas.

21. Find the equation of state of a solid that has an isobaric
expansion coefficient dV /dT = 2cT − bp and an

isothermal pressure-volume coefficient dV /dp = −bT .

3.2 Work, Heat, and Internal Energy

22. A gas at a pressure of 2.00 atm undergoes a quasi-
static isobaric expansion from 3.00 to 5.00 L. How much
work is done by the gas?

23. It takes 500 J of work to compress quasi-statically
0.50 mol of an ideal gas to one-fifth its original volume.
Calculate the temperature of the gas, assuming it remains
constant during the compression.

24. It is found that, when a dilute gas expands quasi-
statically from 0.50 to 4.0 L, it does 250 J of work.
Assuming that the gas temperature remains constant at 300
K, how many moles of gas are present?

25. In a quasi-static isobaric expansion, 500 J of work are
done by the gas. If the gas pressure is 0.80 atm, what is
the fractional increase in the volume of the gas, assuming it
was originally at 20.0 L?

26. When a gas undergoes a quasi-static isobaric change
in volume from 10.0 to 2.0 L, 15 J of work from an external
source are required. What is the pressure of the gas?

27. An ideal gas expands quasi-statically and isothermally
from a state with pressure p and volume V to a state with
volume 4V. Show that the work done by the gas in the
expansion is pV(ln 4).

28. As shown below, calculate the work done by the gas in
the quasi-static processes represented by the paths (a) AB;
(b) ADB; (c) ACB; and (d) ADCB.

29. (a) Calculate the work done by the gas along the
closed path shown below. The curved section between R
and S is semicircular. (b) If the process is carried out in the
opposite direction, what is the work done by the gas?

30. An ideal gas expands quasi-statically to three times
its original volume. Which process requires more work
from the gas, an isothermal process or an isobaric one?
Determine the ratio of the work done in these processes.

31. A dilute gas at a pressure of 2.0 atm and a volume
of 4.0 L is taken through the following quasi-static steps:
(a) an isobaric expansion to a volume of 10.0 L, (b) an
isochoric change to a pressure of 0.50 atm, (c) an isobaric
compression to a volume of 4.0 L, and (d) an isochoric
change to a pressure of 2.0 atm. Show these steps on a pV
diagram and determine from your graph the net work done
by the gas.

32. What is the average mechanical energy of the atoms of
an ideal monatomic gas at 300 K?

33. What is the internal energy of 6.00 mol of an ideal
monatomic gas at 200 °C ?

34. Calculate the internal energy of 15 mg of helium at a
temperature of 0 °C.

35. Two monatomic ideal gases A and B are at the same
temperature. If 1.0 g of gas A has the same internal energy
as 0.10 g of gas B, what are (a) the ratio of the number of
moles of each gas and (b) the ration of the atomic masses
of the two gases?
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36. The van der Waals coefficients for oxygen are

a = 0.138 J · m3 /mol2 and b = 3.18 × 10−5 m3 /mol .

Use these values to draw a van der Waals isotherm of
oxygen at 100 K. On the same graph, draw isotherms of one
mole of an ideal gas.

37. Find the work done in the quasi-static processes shown
below. The states are given as (p, V) values for the points
in the pV plane: 1 (3 atm, 4 L), 2 (3 atm, 6 L), 3 (5 atm, 4
L), 4 (2 atm, 6 L), 5 (4 atm, 2 L), 6 (5 atm, 5 L), and 7 (2
atm, 5 L).

3.3 First Law of Thermodynamics

38. When a dilute gas expands quasi-statically from 0.50
to 4.0 L, it does 250 J of work. Assuming that the gas
temperature remains constant at 300 K, (a) what is the
change in the internal energy of the gas? (b) How much
heat is absorbed by the gas in this process?

39. In a quasi-static isobaric expansion, 500 J of work
are done by the gas. The gas pressure is 0.80 atm and it
was originally at 20.0 L. If the internal energy of the gas
increased by 80 J in the expansion, how much heat does the
gas absorb?

40. An ideal gas expands quasi-statically and isothermally

from a state with pressure p and volume V to a state with
volume 4V. How much heat is added to the expanding gas?

41. As shown below, if the heat absorbed by the gas along
AB is 400 J, determine the quantities of heat absorbed
along (a) ADB; (b) ACB; and (c) ADCB.

42. During the isobaric expansion from A to B represented
below, 130 J of heat are removed from the gas. What is the
change in its internal energy?

43. (a) What is the change in internal energy for the
process represented by the closed path shown below? (b)
How much heat is exchanged? (c) If the path is traversed in
the opposite direction, how much heat is exchanged?

44. When a gas expands along path AC shown below,
it does 400 J of work and absorbs either 200 or 400 J of
heat. (a) Suppose you are told that along path ABC, the gas
absorbs either 200 or 400 J of heat. Which of these values
is correct? (b) Give the correct answer from part (a), how
much work is done by the gas along ABC? (c) Along CD,
the internal energy of the gas decreases by 50 J. How much
heat is exchanged by the gas along this path?

Chapter 3 | The First Law of Thermodynamics 137



45. When a gas expands along AB (see below), it does 500
J of work and absorbs 250 J of heat. When the gas expands
along AC, it does 700 J of work and absorbs 300 J of heat.
(a) How much heat does the gas exchange along BC? (b)
When the gas makes the transmission from C to A along
CDA, 800 J of work are done on it from C to D. How much
heat does it exchange along CDA?

46. A dilute gas is stored in the left chamber of a container
whose walls are perfectly insulating (see below), and the
right chamber is evacuated. When the partition is removed,
the gas expands and fills the entire container. Calculate the
work done by the gas. Does the internal energy of the gas
change in this process?

47. Ideal gases A and B are stored in the left and right
chambers of an insulated container, as shown below. The
partition is removed and the gases mix. Is any work done
in this process? If the temperatures of A and B are initially
equal, what happens to their common temperature after
they are mixed?

48. An ideal monatomic gas at a pressure of

2.0 × 105 N/m2 and a temperature of 300 K undergoes

a quasi-static isobaric expansion from

2.0 × 103 to 4.0 × 103 cm3. (a) What is the work done

by the gas? (b) What is the temperature of the gas after the
expansion? (c) How many moles of gas are there? (d) What
is the change in internal energy of the gas? (e) How much
heat is added to the gas?

49. Consider the process for steam in a cylinder shown
below. Suppose the change in the internal energy in this
process is 30 kJ. Find the heat entering the system.

50. The state of 30 moles of steam in a cylinder is changed
in a cyclic manner from a-b-c-a, where the pressure and
volume of the states are: a (30 atm, 20 L), b (50 atm, 20
L), and c (50 atm, 45 L). Assume each change takes place
along the line connecting the initial and final states in the
pV plane. (a) Display the cycle in the pV plane. (b) Find
the net work done by the steam in one cycle. (c) Find the
net amount of heat flow in the steam over the course of one
cycle.

51. A monatomic ideal gas undergoes a quasi-static
process that is described by the function
p(V) = p1 + 3(V − V1) , where the starting state is
⎛
⎝p1, V1

⎞
⎠ and the final state ⎛

⎝p2, V2
⎞
⎠ . Assume the system

consists of n moles of the gas in a container that can
exchange heat with the environment and whose volume can
change freely. (a) Evaluate the work done by the gas during
the change in the state. (b) Find the change in internal
energy of the gas. (c) Find the heat input to the gas during
the change. (d) What are initial and final temperatures?
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52. A metallic container of fixed volume of

2.5 × 10−3 m3 immersed in a large tank of temperature

27 °C contains two compartments separated by a freely

movable wall. Initially, the wall is kept in place by a stopper
so that there are 0.02 mol of the nitrogen gas on one side
and 0.03 mol of the oxygen gas on the other side, each
occupying half the volume. When the stopper is removed,
the wall moves and comes to a final position. The
movement of the wall is controlled so that the wall moves
in infinitesimal quasi-static steps. (a) Find the final
volumes of the two sides assuming the ideal gas behavior
for the two gases. (b) How much work does each gas do on
the other? (c) What is the change in the internal energy of
each gas? (d) Find the amount of heat that enters or leaves
each gas.

53. A gas in a cylindrical closed container is adiabatically
and quasi-statically expanded from a state A (3 MPa, 2
L) to a state B with volume of 6 L along the path
1.8 pV = constant. (a) Plot the path in the pV plane. (b)

Find the amount of work done by the gas and the change in
the internal energy of the gas during the process.

3.4 Thermodynamic Processes

54. Two moles of a monatomic ideal gas at (5 MPa, 5 L) is
expanded isothermally until the volume is doubled (step 1).
Then it is cooled isochorically until the pressure is 1 MPa
(step 2). The temperature drops in this process. The gas is
now compressed isothermally until its volume is back to 5
L, but its pressure is now 2 MPa (step 3). Finally, the gas is
heated isochorically to return to the initial state (step 4). (a)
Draw the four processes in the pV plane. (b) Find the total
work done by the gas.

55. Consider a transformation from point A to B in a two-
step process. First, the pressure is lowered from 3 MPa at
point A to a pressure of 1 MPa, while keeping the volume
at 2 L by cooling the system. The state reached is labeled
C. Then the system is heated at a constant pressure to
reach a volume of 6 L in the state B. (a) Find the amount
of work done on the ACB path. (b) Find the amount of
heat exchanged by the system when it goes from A to B
on the ACB path. (c) Compare the change in the internal
energy when the AB process occurs adiabatically with the
AB change through the two-step process on the ACB path.

56. Consider a cylinder with a movable piston containing
n moles of an ideal gas. The entire apparatus is immersed
in a constant temperature bath of temperature T kelvin. The
piston is then pushed slowly so that the pressure of the
gas changes quasi-statically from p1 to p2 at constant

temperature T. Find the work done by the gas in terms of n,
R, T, p1, and p2.

57. An ideal gas expands isothermally along AB and does
700 J of work (see below). (a) How much heat does the gas
exchange along AB? (b) The gas then expands adiabatically
along BC and does 400 J of work. When the gas returns to
A along CA, it exhausts 100 J of heat to its surroundings.
How much work is done on the gas along this path?

58. Consider the processes shown below. In the processes
AB and BC, 3600 J and 2400 J of heat are added to the
system, respectively. (a) Find the work done in each of
the processes AB, BC, AD, and DC. (b) Find the internal
energy change in processes AB and BC. (c) Find the
internal energy difference between states C and A. (d) Find
the total heat added in the ADC process. (e) From the
information give, can you find the heat added in process
AD? Why or why not?

59. Two moles of helium gas are placed in a cylindrical
container with a piston. The gas is at room temperature

25 °C and under a pressure of 3.0 × 105 Pa. When the

pressure from the outside is decreased while keeping the
temperature the same as the room temperature, the volume
of the gas doubles. (a) Find the work the external agent
does on the gas in the process. (b) Find the heat exchanged
by the gas and indicate whether the gas takes in or gives up
heat. Assume ideal gas behavior.

60. An amount of n moles of a monatomic ideal gas in
a conducting container with a movable piston is placed in
a large thermal heat bath at temperature T1 and the gas

is allowed to come to equilibrium. After the equilibrium
is reached, the pressure on the piston is lowered so that
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the gas expands at constant temperature. The process is
continued quasi-statically until the final pressure is 4/3 of
the initial pressure p1. (a) Find the change in the internal

energy of the gas. (b) Find the work done by the gas. (c)
Find the heat exchanged by the gas, and indicate, whether
the gas takes in or gives up heat.

3.5 Heat Capacities of an Ideal Gas

61. The temperature of an ideal monatomic gas rises by
8.0 K. What is the change in the internal energy of 1 mol of
the gas at constant volume?

62. For a temperature increase of 10 °C at constant

volume, what is the heat absorbed by (a) 3.0 mol of a dilute
monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and
(c) 15 mol of a dilute polyatomic gas?

63. If the gases of the preceding problem are initially at
300 K, what are their internal energies after they absorb the
heat?

64. Consider 0.40 mol of dilute carbon dioxide at a
pressure of 0.50 atm and a volume of 50 L. What is the
internal energy of the gas?

65. When 400 J of heat are slowly added to 10 mol of an
ideal monatomic gas, its temperature rises by 10 °C . What

is the work done on the gas?

66. One mole of a dilute diatomic gas occupying a volume
of 10.00 L expands against a constant pressure of 2.000 atm
when it is slowly heated. If the temperature of the gas rises
by 10.00 K and 400.0 J of heat are added in the process,
what is its final volume?

3.6 Adiabatic Processes for an Ideal Gas

67. A monatomic ideal gas undergoes a quasi-static
adiabatic expansion in which its volume is doubled. How is
the pressure of the gas changed?

68. An ideal gas has a pressure of 0.50 atm and a volume
of 10 L. It is compressed adiabatically and quasi-statically
until its pressure is 3.0 atm and its volume is 2.8 L. Is the
gas monatomic, diatomic, or polyatomic?

69. Pressure and volume measurements of a dilute gas
undergoing a quasi-static adiabatic expansion are shown
below. Plot ln p vs. V and determine γ for this gas from

your graph.

P (atm) V (L)

20.0 1.0

17.0 1.1

14.0 1.3

11.0 1.5

8.0 2.0

5.0 2.6

2.0 5.2

1.0 8.4

70. An ideal monatomic gas at 300 K expands
adiabatically and reversibly to twice its volume. What is its
final temperature?

71. An ideal diatomic gas at 80 K is slowly compressed
adiabatically and reversibly to twice its volume. What is its
final temperature?

72. An ideal diatomic gas at 80 K is slowly compressed
adiabatically to one-third its original volume. What is its
final temperature?

73. Compare the charge in internal energy of an ideal
gas for a quasi-static adiabatic expansion with that for a
quasi-static isothermal expansion. What happens to the
temperature of an ideal gas in an adiabatic expansion?

74. The temperature of n moles of an ideal gas changes
from T1 to T2 in a quasi-static adiabatic transition. Show

that the work done by the gas is given by

W = nR
γ − 1(T1 − T2).

75. A dilute gas expands quasi-statically to three times
its initial volume. Is the final gas pressure greater for an
isothermal or an adiabatic expansion? Does your answer
depend on whether the gas is monatomic, diatomic, or
polyatomic?

76. (a) An ideal gas expands adiabatically from a volume

of 2.0 × 10−3 m3 to 2.5 × 10−3 m3 . If the initial

pressure and temperature were 5.0 × 105 Pa and 300 K,

respectively, what are the final pressure and temperature
of the gas? Use γ = 5/3 for the gas. (b) In an isothermal

process, an ideal gas expands from a volume of

2.0 × 10−3 m3 to 2.5 × 10−3 m3 . If the initial pressure

and temperature were 5.0 × 105 Pa and 300 K,

respectively, what are the final pressure and temperature of
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the gas?

77. On an adiabatic process of an ideal gas pressure,
volume and temperature change such that pV γ is constant

with γ = 5/3 for monatomic gas such as helium and

γ = 7/5 for diatomic gas such as hydrogen at room

temperature. Use numerical values to plot two isotherms of
1 mol of helium gas using ideal gas law and two adiabatic
processes mediating between them. Use

T1 = 500 K, V1 = 1 L, and T2 = 300 K for your plot.

78. Two moles of a monatomic ideal gas such as helium
is compressed adiabatically and reversibly from a state (3
atm, 5 L) to a state with pressure 4 atm. (a) Find the volume
and temperature of the final state. (b) Find the temperature
of the initial state of the gas. (c) Find the work done by the
gas in the process. (d) Find the change in internal energy of
the gas in the process.

ADDITIONAL PROBLEMS

79. Consider the process shown below. During steps AB
and BC, 3600 J and 2400 J of heat, respectively, are added
to the system. (a) Find the work done in each of the
processes AB, BC, AD, and DC. (b) Find the internal energy
change in processes AB and BC. (c) Find the internal energy
difference between states C and A. (d) Find the total heat
added in the ADC process. (e) From the information given,
can you find the heat added in process AD? Why or why
not?

80. A car tire contains 0.0380 m3 of air at a pressure of

2.20 × 105 Pa (about 32 psi). How much more internal

energy does this gas have than the same volume has at zero
gauge pressure (which is equivalent to normal atmospheric
pressure)?

81. A helium-filled toy balloon has a gauge pressure of
0.200 atm and a volume of 10.0 L. How much greater is the
internal energy of the helium in the balloon than it would
be at zero gauge pressure?

82. Steam to drive an old-fashioned steam locomotive is

supplied at a constant gauge pressure of 1.75 × 106 N/m2

(about 250 psi) to a piston with a 0.200-m radius. (a) By
calculating pΔV , find the work done by the steam when

the piston moves 0.800 m. Note that this is the net work
output, since gauge pressure is used. (b) Now find the
amount of work by calculating the force exerted times the
distance traveled. Is the answer the same as in part (a)?

83. A hand-driven tire pump has a piston with a 2.50-cm
diameter and a maximum stroke of 30.0 cm. (a) How much
work do you do in one stroke if the average gauge pressure

is 2.4 × 105 N/m2 (about 35 psi)? (b) What average force

do you exert on the piston, neglecting friction and
gravitational force?

84. Calculate the net work output of a heat engine
following path ABCDA as shown below.

85. What is the net work output of a heat engine that
follows path ABDA in the preceding problem with a straight
line from B to D? Why is the work output less than for path
ABCDA?

86. Five moles of a monatomic ideal gas in a cylinder at
27 °C is expanded isothermally from a volume of 5 L to

10 L. (a) What is the change in internal energy? (b) How
much work was done on the gas in the process? (c) How
much heat was transferred to the gas?

87. Four moles of a monatomic ideal gas in a cylinder
at 27 °C is expanded at constant pressure equal to 1 atm

until its volume doubles. (a) What is the change in internal
energy? (b) How much work was done by the gas in the
process? (c) How much heat was transferred to the gas?

88. Helium gas is cooled from 20 °C to 10 °C by

expanding from 40 atm to 1 atm. If there is 1.4 mol of
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helium, (a) What is the final volume of helium? (b) What is
the change in internal energy?

89. In an adiabatic process, oxygen gas in a container
is compressed along a path that can be described by the
following pressure in atm as a function of volume V, with

V0 = 1L : p = (3.0 atm)(V /V0 )−1.2 . The initial and final

volumes during the process were 2 L and 1.5 L,
respectively. Find the amount of work done on the gas.

90. A cylinder containing three moles of a monatomic
ideal gas is heated at a constant pressure of 2 atm. The
temperature of the gas changes from 300 K to 350 K as a
result of the expansion. Find work done (a) on the gas; and
(b) by the gas.

91. A cylinder containing three moles of nitrogen gas is
heated at a constant pressure of 2 atm. The temperature of
the gas changes from 300 K to 350 K as a result of the
expansion. Find work done (a) on the gas, and (b) by the

gas by using van der Waals equation of state instead of ideal
gas law.

92. Two moles of a monatomic ideal gas such as oxygen
is compressed adiabatically and reversibly from a state (3
atm, 5 L) to a state with a pressure of 4 atm. (a) Find
the volume and temperature of the final state. (b) Find the
temperature of the initial state. (c) Find work done by the
gas in the process. (d) Find the change in internal energy in
the process. Assume CV = 5R and C p = CV + R for the

diatomic ideal gas in the conditions given.

93. An insulated vessel contains 1.5 moles of argon at 2
atm. The gas initially occupies a volume of 5 L. As a result
of the adiabatic expansion the pressure of the gas is reduced
to 1 atm. (a) Find the volume and temperature of the final
state. (b) Find the temperature of the gas in the initial state.
(c) Find the work done by the gas in the process. (d) Find
the change in the internal energy of the gas in the process.

CHALLENGE PROBLEMS

94. One mole of an ideal monatomic gas occupies a

volume of 1.0 × 10−2 m3 at a pressure of

2.0 × 105 N/m2. (a) What is the temperature of the gas?

(b) The gas undergoes a quasi-static adiabatic compression

until its volume is decreased to 5.0 × 10−3 m3. What is

the new gas temperature? (c) How much work is done on
the gas during the compression? (d) What is the change in
the internal energy of the gas?

95. One mole of an ideal gas is initially in a chamber of

volume 1.0 × 10−2 m3 and at a temperature of 27 °C .

(a) How much heat is absorbed by the gas when it slowly
expands isothermally to twice its initial volume? (b)
Suppose the gas is slowly transformed to the same final
state by first decreasing the pressure at constant volume and
then expanding it isobarically. What is the heat transferred
for this case? (c) Calculate the heat transferred when the
gas is transformed quasi-statically to the same final state
by expanding it isobarically, then decreasing its pressure at
constant volume.

96. A bullet of mass 10 g is traveling horizontally at 200
m/s when it strikes and embeds in a pendulum bob of mass
2.0 kg. (a) How much mechanical energy is dissipated in
the collision? (b) Assuming that Cv for the bob plus bullet

is 3R, calculate the temperature increase of the system due
to the collision. Take the molecular mass of the system to
be 200 g/mol.

97. The insulated cylinder shown below is closed at both

ends and contains an insulating piston that is free to move
on frictionless bearings. The piston divides the chamber
into two compartments containing gases A and B.
Originally, each compartment has a volume of

5.0 × 10−2 m3 and contains a monatomic ideal gas at a

temperature of 0 °C and a pressure of 1.0 atm. (a) How

many moles of gas are in each compartment? (b) Heat Q is
slowly added to A so that it expands and B is compressed
until the pressure of both gases is 3.0 atm. Use the fact
that the compression of B is adiabatic to determine the final
volume of both gases. (c) What are their final temperatures?
(d) What is the value of Q?

98. In a diesel engine, the fuel is ignited without a spark
plug. Instead, air in a cylinder is compressed adiabatically
to a temperature above the ignition temperature of the fuel;
at the point of maximum compression, the fuel is injected
into the cylinder. Suppose that air at 20 °C is taken into the

cylinder at a volume V1 and then compressed adiabatically

and quasi-statically to a temperature of 600 °C and a
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volume V2. If γ = 1.4, what is the ratio V1/V2? (Note:

In an operating diesel engine, the compression is not quasi-

static.)
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