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4| THE SECOND LAW OF
THERMODYNAMICS

Figure 4.1 A xenon ion engine from the Jet Propulsion Laboratory shows the faint blue glow of charged atoms emitted from
the engine. The ion propulsion engine is the first nonchemical propulsion to be used as the primary means of propelling a
spacecraft.
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Introduction

According to the first law of thermodynamics, the only processes that can occur are those that conserve energy. But this
cannot be the only restriction imposed by nature, because many seemingly possible thermodynamic processes that would
conserve energy do not occur. For example, when two bodies are in thermal contact, heat never flows from the colder body
to the warmer one, even though this is not forbidden by the first law. So some other thermodynamic principles must be
controlling the behavior of physical systems.

One such principle is the second law of thermodynamics, which limits the use of energy within a source. Energy cannot
arbitrarily pass from one object to another, just as we cannot transfer heat from a cold object to a hot one without doing
any work. We cannot unmix cream from coffee without a chemical process that changes the physical characteristics of the
system or its environment. We cannot use internal energy stored in the air to propel a car, or use the energy of the ocean to
run a ship, without disturbing something around that object.

In the chapter covering the first law of thermodynamics, we started our discussion with a joke by C. P. Snow stating that
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the first law means “you can’t win.” He paraphrased the second law as “you can’t break even, except on a very cold day.”
Unless you are at zero kelvin, you cannot convert 100% of thermal energy into work. We start by discussing spontaneous
processes and explain why some processes require work to occur even if energy would have been conserved.

4.1 | Reversible and Irreversible Processes

Learning Objectives

By the end of this section, you will be able to:

* Define reversible and irreversible processes
» State the second law of thermodynamics via an irreversible process

Consider an ideal gas that is held in half of a thermally insulated container by a wall in the middle of the container. The
other half of the container is under vacuum with no molecules inside. Now, if we remove the wall in the middle quickly, the
gas expands and fills up the entire container immediately, as shown in Figure 4.2.

Figure 4.2 A gas expanding from half of a container to the entire container (a) before and (b) after the wall in the middle is
removed.

Because half of the container is under vacuum before the gas expands there, we do not expect any work to be done by the
system—that is, W = 0 —because no force from the vacuum is exerted on the gas during the expansion. If the container

is thermally insulated from the rest of the environment, we do not expect any heat transfer to the system either, so Q =0.
Then the first law of thermodynamics leads to the change of the internal energy of the system,
AE,,=0-W=0.

For an ideal gas, if the internal energy doesn’t change, then the temperature stays the same. Thus, the equation of state of
the ideal gas gives us the final pressure of the gas, p = nRT/V = p,/2, where p is the pressure of the gas before the

expansion. The volume is doubled and the pressure is halved, but nothing else seems to have changed during the expansion.

All of this discussion is based on what we have learned so far and makes sense. Here is what puzzles us: Can all the
molecules go backward to the original half of the container in some future time? Our intuition tells us that this is going to be
very unlikely, even though nothing we have learned so far prevents such an event from happening, regardless of how small
the probability is. What we are really asking is whether the expansion into the vacuum half of the container is reversible.

A reversible process is a process in which the system and environment can be restored to exactly the same initial states that
they were in before the process occurred, if we go backward along the path of the process. The necessary condition for a
reversible process is therefore the quasi-static requirement. Note that it is quite easy to restore a system to its original state;
the hard part is to have its environment restored to its original state at the same time. For example, in the example of an ideal
gas expanding into vacuum to twice its original volume, we can easily push it back with a piston and restore its temperature
and pressure by removing some heat from the gas. The problem is that we cannot do it without changing something in its
surroundings, such as dumping some heat there.

A reversible process is truly an ideal process that rarely happens. We can make certain processes close to reversible and
therefore use the consequences of the corresponding reversible processes as a starting point or reference. In reality, almost
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all processes are irreversible, and some properties of the environment are altered when the properties of the system are
restored. The expansion of an ideal gas, as we have just outlined, is irreversible because the process is not even quasi-static,
that is, not in an equilibrium state at any moment of the expansion.

From the microscopic point of view, a particle described by Newton’s second law can go backward if we flip the direction

023

of time. But this is not the case, in practical terms, in a macroscopic system with more than 1 particles or molecules,

where numerous collisions between these molecules tend to erase any trace of memory of the initial trajectory of each of
the particles. For example, we can actually estimate the chance for all the particles in the expanded gas to go back to the
original half of the container, but the current age of the universe is still not long enough for it to happen even once.

An irreversible process is what we encounter in reality almost all the time. The system and its environment cannot be
restored to their original states at the same time. Because this is what happens in nature, it is also called a natural process.
The sign of an irreversible process comes from the finite gradient between the states occurring in the actual process. For
example, when heat flows from one object to another, there is a finite temperature difference (gradient) between the two
objects. More importantly, at any given moment of the process, the system most likely is not at equilibrium or in a well-
defined state. This phenomenon is called irreversibility.

Let us see another example of irreversibility in thermal processes. Consider two objects in thermal contact: one at
temperature 7'; and the other at temperature 7, > T, as shown in Figure 4.3.

Figure 4.3 Spontaneous heat flow from an object at higher
temperature 7 to another at lower temperature 7.

We know from common personal experience that heat flows from a hotter object to a colder one. For example, when we
hold a few pieces of ice in our hands, we feel cold because heat has left our hands into the ice. The opposite is true when
we hold one end of a metal rod while keeping the other end over a fire. Based on all of the experiments that have been done
on spontaneous heat transfer, the following statement summarizes the governing principle:

Second Law of Thermodynamics (Clausius statement)

Heat never flows spontaneously from a colder object to a hotter object.

This statement turns out to be one of several different ways of stating the second law of thermodynamics. The form of this
statement is credited to German physicist Rudolf Clausius (1822—-1888) and is referred to as the Clausius statement of the
second law of thermodynamics. The word “spontaneously” here means no other effort has been made by a third party, or
one that is neither the hotter nor colder object. We will introduce some other major statements of the second law and show
that they imply each other. In fact, all the different statements of the second law of thermodynamics can be shown to be
equivalent, and all lead to the irreversibility of spontaneous heat flow between macroscopic objects of a very large number
of molecules or particles.

Both isothermal and adiabatic processes sketched on a pV graph (discussed in The First Law of Thermodynamics) are
reversible in principle because the system is always at an equilibrium state at any point of the processes and can go forward
or backward along the given curves. Other idealized processes can be represented by pV curves; Table 4.1 summarizes the
most common reversible processes.

Process Constant Quantity and Resulting Fact
Isobaric Constant pressure W = pAV
Isochoric Constant volume W =0

Table 4.1 Summary of Simple Thermodynamic Processes
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Process Constant Quantity and Resulting Fact

Isothermal Constant temperature AT =0

Adiabatic No heat transfer Q =0

Table 4.1 Summary of Simple Thermodynamic Processes

4.2 | Heat Engines

Learning Objectives

By the end of this section, you will be able to:

* Describe the function and components of a heat engine
» Explain the efficiency of an engine
* Calculate the efficiency of an engine for a given cycle of an ideal gas

A heat engine is a device used to extract heat from a source and then convert it into mechanical work that is used for
all sorts of applications. For example, a steam engine on an old-style train can produce the work needed for driving the
train. Several questions emerge from the construction and application of heat engines. For example, what is the maximum
percentage of the heat extracted that can be used to do work? This turns out to be a question that can only be answered
through the second law of thermodynamics.

The second law of thermodynamics can be formally stated in several ways. One statement presented so far is about the
direction of spontaneous heat flow, known as the Clausius statement. A couple of other statements are based on heat engines.
Whenever we consider heat engines and associated devices such as refrigerators and heat pumps, we do not use the normal
sign convention for heat and work. For convenience, we assume that the symbols Qy, O., and W represent only the

amounts of heat transferred and work delivered, regardless what the givers or receivers are. Whether heat is entering or
leaving a system and work is done to or by a system are indicated by proper signs in front of the symbols and by the
directions of arrows in diagrams.

It turns out that we need more than one heat source/sink to construct a heat engine. We will come back to this point later
in the chapter, when we compare different statements of the second law of thermodynamics. For the moment, we assume
that a heat engine is constructed between a heat source (high-temperature reservoir or hot reservoir) and a heat sink (low-
temperature reservoir or cold reservoir), represented schematically in Figure 4.4. The engine absorbs heat O}, from a heat

source ( hot reservoir) of Kelvin temperature 77, uses some of that energy to produce useful work W, and then discards
the remaining energy as heat Q. into a heat sink ( cold reserveir) of Kelvin temperature 7. Power plants and internal

combustion engines are examples of heat engines. Power plants use steam produced at high temperature to drive electric
generators, while exhausting heat to the atmosphere or a nearby body of water in the role of the heat sink. In an internal
combustion engine, a hot gas-air mixture is used to push a piston, and heat is exhausted to the nearby atmosphere in a similar
manner.
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Figure 4.4 A schematic representation of a heat engine.
Energy flows from the hot reservoir to the cold reservoir while
doing work.

Actual heat engines have many different designs. Examples include internal combustion engines, such as those used in most
cars today, and external combustion engines, such as the steam engines used in old steam-engine trains. Figure 4.5 shows
a photo of a nuclear power plant in operation. The atmosphere around the reactors acts as the cold reservoir, and the heat
generated from the nuclear reaction provides the heat from the hot reservoir.

Figure 4.5 The heat exhausted from a nuclear power plant
goes to the cooling towers, where it is released into the
atmosphere.

Heat engines operate by carrying a working substance through a cycle. In a steam power plant, the working substance is
water, which starts as a liquid, becomes vaporized, is then used to drive a turbine, and is finally condensed back into the
liquid state. As is the case for all working substances in cyclic processes, once the water returns to its initial state, it repeats
the same sequence.

For now, we assume that the cycles of heat engines are reversible, so there is no energy loss to friction or other irreversible
effects. Suppose that the engine of Figure 4.4 goes through one complete cycle and that Qy,, O, and W represent the

heats exchanged and the work done for that cycle. Since the initial and final states of the system are the same, AE;, =0

for the cycle. We therefore have from the first law of thermodynamics,
W=0-AE;, =(Qph—0Qc—0,

so that

W =0 - 0. (4.1)

The most important measure of a heat engine is its efficiency (e), which is simply “what we get out” divided by “what we
put in” during each cycle, as defined by e = W, /Q;,.
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With a heat engine working between two heat reservoirs, we get out W and put in Qy,, so the efficiency of the engine is

0. (42)

Here, we used Equation 4.1, W = Q;, — O, in the final step of this expression for the efficiency.

Example 4.1

A Lawn Mower

A lawn mower is rated to have an efficiency of 25.0% and an average power of 3.00 kW. What are (a) the
average work and (b) the minimum heat discharge into the air by the lawn mower in one minute of use?

Strategy

From the average power—that is, the rate of work production—we can figure out the work done in the given
elapsed time. Then, from the efficiency given, we can figure out the minimum heat discharge Q. = Q (1 —e)

with Qh = QC +W.

Solution
a. The average work delivered by the lawn mower is

W = PAr =3.00% 103 x 60x 1.00J = 180 kJ.
b. The minimum heat discharged into the air is given by

Qc=0p(l —e) = (Qc + W) —e),

which leads to
O.=W(/e—1)=180x (1/0.25 — 1) kJ = 540 kJ.

Significance

As the efficiency rises, the minimum heat discharged falls. This helps our environment and atmosphere by not
having as much waste heat expelled.

4.3 | Refrigerators and Heat Pumps

Learning Objectives

By the end of this section, you will be able to:

* Describe a refrigerator and a heat pump and list their differences
* Calculate the performance coefficients of simple refrigerators and heat pumps

The cycles we used to describe the engine in the preceding section are all reversible, so each sequence of steps can just as
easily be performed in the opposite direction. In this case, the engine is known as a refrigerator or a heat pump, depending
on what is the focus: the heat removed from the cold reservoir or the heat dumped to the hot reservoir. Either a refrigerator
or a heat pump is an engine running in reverse. For a refrigerator, the focus is on removing heat from a specific area. For
a heat pump, the focus is on dumping heat to a specific area.

We first consider a refrigerator (Figure 4.6). The purpose of this engine is to remove heat from the cold reservoir, which
is the space inside the refrigerator for an actual household refrigerator or the space inside a building for an air-conditioning
unit.
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Figure 4.6 A schematic representation of a refrigerator (or a

heat pump). The arrow next to work (W) indicates work being
put into the system.

A refrigerator (or heat pump) absorbs heat Q. from the cold reservoir at Kelvin temperature 7. and discards heat Oy
to the hot reservoir at Kelvin temperature 7}, while work W is done on the engine’s working substance, as shown by

the arrow pointing toward the system in the figure. A household refrigerator removes heat from the food within it while
exhausting heat to the surrounding air. The required work, for which we pay in our electricity bill, is performed by the motor
that moves a coolant through the coils. A schematic sketch of a household refrigerator is given in Figure 4.7.
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Figure 4.7 A schematic diagram of a household refrigerator. A coolant with a
boiling temperature below the freezing point of water is sent through the cycle
(clockwise in this diagram). The coolant extracts heat from the refrigerator at the
evaporator, causing coolant to vaporize. It is then compressed and sent through the
condenser, where it exhausts heat to the outside.

The effectiveness or coefficient of performance Ky of a refrigerator is measured by the heat removed from the cold

reservoir divided by the work done by the working substance cycle by cycle:

Ke=Qeo O (4.3)

Op—0Qc¢

Note that we have used the condition of energy conservation, W = Q}, — O, in the final step of this expression.

The effectiveness or coefficient of performance Kp of a heat pump is measured by the heat dumped to the hot reservoir

divided by the work done to the engine on the working substance cycle by cycle:

Oh On (4.4)

KP:W Qh_Qc.
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Once again, we use the energy conservation condition W = Qp — Q. to obtain the final step of this expression.

4.4 | Statements of the Second Law of Thermodynamics

Learning Objectives

By the end of this section, you will be able to:

* Contrast the second law of thermodynamics statements according to Kelvin and Clausius
formulations

* Interpret the second of thermodynamics via irreversibility

Earlier in this chapter, we introduced the Clausius statement of the second law of thermodynamics, which is based on
the irreversibility of spontaneous heat flow. As we remarked then, the second law of thermodynamics can be stated in
several different ways, and all of them can be shown to imply the others. In terms of heat engines, the second law of
thermodynamics may be stated as follows:

Second Law of Thermodynamics (Kelvin statement)

It is impossible to convert the heat from a single source into work without any other effect.

This is known as the Kelvin statement of the second law of thermodynamics. This statement describes an unattainable
“ perfect engine,” as represented schematically in Figure 4.8(a). Note that “without any other effect” is a very strong
restriction. For example, an engine can absorb heat and turn it all into work, but not if it completes a cycle. Without
completing a cycle, the substance in the engine is not in its original state and therefore an “other effect” has occurred.
Another example is a chamber of gas that can absorb heat from a heat reservoir and do work isothermally against a piston
as it expands. However, if the gas were returned to its initial state (that is, made to complete a cycle), it would have to be
compressed and heat would have to be extracted from it.

The Kelvin statement is a manifestation of a well-known engineering problem. Despite advancing technology, we are not
able to build a heat engine that is 100% efficient. The first law does not exclude the possibility of constructing a perfect

engine, but the second law forbids it.

Figure 4.8 (a) A “perfect heat engine” converts all input heat into work. (b) A “perfect
refrigerator” transports heat from a cold reservoir to a hot reservoir without work input. Neither
of these devices is achievable in reality.

We can show that the Kelvin statement is equivalent to the Clausius statement if we view the two objects in the Clausius
statement as a cold reservoir and a hot reservoir. Thus, the Clausius statement becomes: It is impossible to construct a
refrigerator that transfers heat from a cold reservoir to a hot reservoir without aid from an external source. The Clausius
statement is related to the everyday observation that heat never flows spontaneously from a cold object to a hot object. Heat
transfer in the direction of increasing temperature always requires some energy input. A “ perfect refrigerator,” shown in
Figure 4.8(b), which works without such external aid, is impossible to construct.
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To prove the equivalence of the Kelvin and Clausius statements, we show that if one statement is false, it necessarily follows
that the other statement is also false. Let us first assume that the Clausius statement is false, so that the perfect refrigerator
of Figure 4.8(b) does exist. The refrigerator removes heat Q from a cold reservoir at a temperature 7. and transfers all

of it to a hot reservoir at a temperature 7},. Now consider a real heat engine working in the same temperature range. It
extracts heat Q + AQ from the hot reservoir, does work W, and discards heat Q to the cold reservoir. From the first law,
these quantities are related by W = (Q + AQ) — 0 = AQ.

Suppose these two devices are combined as shown in Figure 4.9. The net heat removed from the hot reservoir is AQ,
no net heat transfer occurs to or from the cold reservoir, and work W is done on some external body. Since W = AQ, the

combination of a perfect refrigerator and a real heat engine is itself a perfect heat engine, thereby contradicting the Kelvin
statement. Thus, if the Clausius statement is false, the Kelvin statement must also be false.

Figure 4.9 Combining a perfect refrigerator and a real heat
engine yields a perfect heat engine because W = AQ.

Using the second law of thermodynamics, we now prove two important properties of heat engines operating between two
heat reservoirs. The first property is that any reversible engine operating between two reservoirs has a greater efficiency
than any irreversible engine operating between the same two reservoirs.

The second property to be demonstrated is that all reversible engines operating between the same two reservoirs have the
same efficiency. To show this, we start with the two engines D and E of Figure 4.10(a), which are operating between
two common heat reservoirs at temperatures 77, and 7. First, we assume that D is a reversible engine and that E is a

hypothetical irreversible engine that has a higher efficiency than D. If both engines perform the same amount of work W
per cycle, it follows from Equation 4.2 that Qy, > @} . It then follows from the first law that Q. > Qc.

Figure 4.10 (a) Two uncoupled engines D and E working between the same reservoirs. (b) The coupled engines, with D
working in reverse.

Suppose the cycle of D is reversed so that it operates as a refrigerator, and the two engines are coupled such that the work
output of E is used to drive D, as shown in Figure 4.10(b). Since Q}, > O}, and Q. > O, the net result of each cycle is
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equivalent to a spontaneous transfer of heat from the cold reservoir to the hot reservoir, a process the second law does not
allow. The original assumption must therefore be wrong, and it is impossible to construct an irreversible engine such that E
is more efficient than the reversible engine D.

Now it is quite easy to demonstrate that the efficiencies of all reversible engines operating between the same reservoirs are
equal. Suppose that D and E are both reversible engines. If they are coupled as shown in Figure 4.10(b), the efficiency
of E cannot be greater than the efficiency of D, or the second law would be violated. If both engines are then reversed, the
same reasoning implies that the efficiency of D cannot be greater than the efficiency of E. Combining these results leads to
the conclusion that all reversible engines working between the same two reservoirs have the same efficiency.

4.1 Check Your Understanding What is the efficiency of a perfect heat engine? What is the coefficient of
performance of a perfect refrigerator?

@ 4.2 Check Your Understanding Show that Qp — Q} = Q. — Q¢ for the hypothetical engine of Figure
4.10(b).

4.5 | The Carnot Cycle

Learning Objectives

* Describe the Carnot cycle with the roles of all four processes involved
* Outline the Carnot principle and its implications
* Demonstrate the equivalence of the Carnot principle and the second law of thermodynamics

In the early 1820s, Sadi Carnot (1786-1832), a French engineer, became interested in improving the efficiencies of practical
heat engines. In 1824, his studies led him to propose a hypothetical working cycle with the highest possible efficiency
between the same two reservoirs, known now as the Carneot cycle. An engine operating in this cycle is called a Carnot
engine. The Carnot cycle is of special importance for a variety of reasons. At a practical level, this cycle represents a
reversible model for the steam power plant and the refrigerator or heat pump. Yet, it is also very important theoretically,
for it plays a major role in the development of another important statement of the second law of thermodynamics. Finally,
because only two reservoirs are involved in its operation, it can be used along with the second law of thermodynamics to
define an absolute temperature scale that is truly independent of any substance used for temperature measurement.

With an ideal gas as the working substance, the steps of the Carnot cycle, as represented by Figure 4.11, are as follows.
1. Isothermal expansion. The gas is placed in thermal contact with a heat reservoir at a temperature 7},. The gas
absorbs heat QO from the heat reservoir and is allowed to expand isothermally, doing work W,. Because the
internal energy E;.. of an ideal gas is a function of the temperature only, the change of the internal energy is zero,
thatis, AF;,; =0 during this isothermal expansion. With the first law of thermodynamics, AE, ;= Q0 — W, we
find that the heat absorbed by the gas is

Qh = Wl = I’lRTh lnﬁ
Vu
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Figure 4.11 The four processes of the Carnot cycle. The working substance is assumed to be an
ideal gas whose thermodynamic path MNOP is represented in Figure 4.12.

Figure 4.12 The total work done by the gas in the Carnot cycle
is shown and given by the area enclosed by the loop MNOPM.

2. Adiabatic expansion. The gas is thermally isolated and allowed to expand further, doing work W,. Because this
expansion is adiabatic, the temperature of the gas falls—in this case, from T}, to T¢. From pV’ = constant and

the equation of state for an ideal gas, pV = nRT , we have
-1
TV' ™" = constant,

so that
-1 -1
T,y =TV ™.
3. Isothermal compression. The gas is placed in thermal contact with a cold reservoir at temperature 7. and
compressed isothermally. During this process, work W3 is done on the gas and it gives up heat Q. to the cold

reservoir. The reasoning used in step 1 now yields

Oe = nRT, 22,
Vp

This OpenStax book is available for free at http://cnx.org/content/col12074/1.3



Chapter 4 | The Second Law of Thermodynamics 157

where Q. is the heat dumped to the cold reservoir by the gas.
4. Adiabatic compression. The gas is thermally isolated and returned to its initial state by compression. In this process,
work W, is done on the gas. Because the compression is adiabatic, the temperature of the gas rises—from

T to Ty, in this particular case. The reasoning of step 2 now gives
-1 -1
TC VP ’ = Th VM r .

The total work done by the gas in the Carnot cycle is given by
W=W1+W2—W3—W4.
This work is equal to the area enclosed by the loop shown in the pV diagram of Figure 4.12. Because the initial and final
states of the system are the same, the change of the internal energy of the gas in the cycle must be zero, that is, AE;,; = 0.

The first law of thermodynamics then gives
W=0-AE, =(Qp— 0o -0,
and
W =0, -0..

To find the efficiency of this engine, we first divide Q. by Oy, :

& _ & IHVO/VP
O, T, nVpIVy,

When the adiabatic constant from step 2 is divided by that of step 4, we find
Vo _Vn
Vp Vi
Substituting this into the equation for Q./Q;,, we obtain

O _T¢
Oy Ty

Finally, with Equation 4.2, we find that the efficiency of this ideal gas Carnot engine is given by

T. (4.5)

€=1—T—h.

An engine does not necessarily have to follow a Carnot engine cycle. All engines, however, have the same net effect,
namely the absorption of heat from a hot reservoir, the production of work, and the discarding of heat to a cold reservoir.
This leads us to ask: Do all reversible cycles operating between the same two reservoirs have the same efficiency? The
answer to this question comes from the second law of thermodynamics discussed earlier: All reversible engine cycles
produce exactly the same efficiency. Also, as you might expect, all real engines operating between two reservoirs are less
efficient than reversible engines operating between the same two reservoirs. This too is a consequence of the second law of
thermodynamics shown earlier.

The cycle of an ideal gas Carnot refrigerator is represented by the pV diagram of Figure 4.13. It is a Carnot engine
operating in reverse. The refrigerator extracts heat Q. from a cold-temperature reservoir at 7. when the ideal gas

expands isothermally. The gas is then compressed adiabatically until its temperature reaches T}, after which an isothermal
compression of the gas results in heat Q) being discarded to a high-temperature reservoir at T3,. Finally, the cycle is

completed by an adiabatic expansion of the gas, causing its temperature to drop to 7.
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Figure 4.13 The work done on the gas in one cycle of the
Carnot refrigerator is shown and given by the area enclosed by
the loop MPONM.

The work done on the ideal gas is equal to the area enclosed by the path of the pV diagram. From the first law, this work is
given by

W=0y-0.
An analysis just like the analysis done for the Carnot engine gives
Qc_on
T. Ty’
When combined with Equation 4.3, this yields
Kg = ﬁ (4.6)

for the coefficient of performance of the ideal-gas Carnot refrigerator. Similarly, we can work out the coefficient of
performance for a Carnot heat pump as

__On __ Ty (4.7)
O, —0Qc Ty,-T¢

Kp

We have just found equations representing the efficiency of a Carnot engine and the coefficient of performance of a Carnot
refrigerator or a Carnot heat pump, assuming an ideal gas for the working substance in both devices. However, these
equations are more general than their derivations imply. We will soon show that they are both valid no matter what the
working substance is.

Carnot summarized his study of the Carnot engine and Carnot cycle into what is now known as Carnet’s principle:

Carnot’s Principle

No engine working between two reservoirs at constant temperatures can have a greater efficiency than a reversible
engine.

This principle can be viewed as another statement of the second law of thermodynamics and can be shown to be equivalent
to the Kelvin statement and the Clausius statement.
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Example 4.2

The Carnot Engine

A Carnot engine has an efficiency of 0.60 and the temperature of its cold reservoir is 300 K. (a) What is the
temperature of the hot reservoir? (b) If the engine does 300 J of work per cycle, how much heat is removed from
the high-temperature reservoir per cycle? (c) How much heat is exhausted to the low-temperature reservoir per
cycle?

Strategy

From the temperature dependence of the thermal efficiency of the Carnot engine, we can find the temperature
of the hot reservoir. Then, from the definition of the efficiency, we can find the heat removed when the work
done by the engine is given. Finally, energy conservation will lead to how much heat must be dumped to the cold
reservoir.

Solution
a. From e =1—T./T} we have

—1_300K
0.60 =1 Ty

so that the temperature of the hot reservoir is

_ 300K _
Ty = 7208 = 750 k.

b. By definition, the efficiency of the engine is e¢ = W/Q, so that the heat removed from the high-

temperature reservoir per cycle is

_ W _300J _
0y =W =30 — 5005,

c. From the first law, the heat exhausted to the low-temperature reservoir per cycle by the engine is
Qc=0,—W=500J-300J=2001.

Significance

A Carnot engine has the maximum possible efficiency of converting heat into work between two reservoirs, but
this does not necessarily mean itis 100% efficient. As the difference in temperatures of the hot and cold reservoir

increases, the efficiency of a Carnot engine increases.

Example 4.3

A Carnot Heat Pump

Imagine a Carnot heat pump operates between an outside temperature of 0 °C and an inside temperature of
20.0 °C . What is the work needed if the heat delivered to the inside of the house is 30.0 kJ?

Strategy

Because the heat pump is assumed to be a Carnot pump, its performance coefficient is given by
Kp = 0/W =T, /(T},— T;). Thus, we can find the work W from the heat delivered Q.

Solution
The work needed is obtained from

W =0, /Kp = Q(Ty, — TITy = 30kI x (293K — 273 K)/293 K = 2 kJ.

Significance

We note that this work depends not only on the heat delivered to the house but also on the temperatures
outside and inside. The dependence on the temperature outside makes them impractical to use in areas where the
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temperature is much colder outside than room temperature.

In terms of energy costs, the heat pump is a very economical means for heating buildings (Figure 4.14). Contrast this
method with turning electrical energy directly into heat with resistive heating elements. In this case, one unit of electrical
energy furnishes at most only one unit of heat. Unfortunately, heat pumps have problems that do limit their usefulness. They
are quite expensive to purchase compared to resistive heating elements, and, as the performance coefficient for a Carnot
heat pump shows, they become less effective as the outside temperature decreases. In fact, below about —10 °C, the heat

they furnish is less than the energy used to operate them.

Figure 4.14 A photograph of a heat pump (large box) located
outside a house. This heat pump is located in a warm climate
area, like the southern United States, since it would be far too
inefficient located in the northern half of the United States.
(credit: modification of work by Peter Stevens)

@ 4.3 Check Your Understanding A Carnot engine operates between reservoirs at 400 °C and 30 °C. (a)
What is the efficiency of the engine? (b) If the engine does 5.0 J of work per cycle, how much heat per cycle
does it absorb from the high-temperature reservoir? (c) How much heat per cycle does it exhaust to the cold-
temperature reservoir? (d) What temperatures at the cold reservoir would give the minimum and maximum
efficiency?

@ 4.4 Check Your Understanding A Carnot refrigerator operates between two heat reservoirs whose
temperatures are 0 °C and 25 °C. (a) What is the coefficient of performance of the refrigerator? (b) If 200 J of

work are done on the working substance per cycle, how much heat per cycle is extracted from the cold
reservoir? (c) How much heat per cycle is discarded to the hot reservoir?

4.6 | Entropy

Learning Objectives

By the end of this section you will be able to:

* Describe the meaning of entropy
* Calculate the change of entropy for some simple processes

The second law of thermodynamics is best expressed in terms of a change in the thermodynamic variable known as entropy,
which is represented by the symbol S. Entropy, like internal energy, is a state function. This means that when a system
makes a transition from one state into another, the change in entropy AS is independent of path and depends only on the

This OpenStax book is available for free at http://cnx.org/content/col12074/1.3
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thermodynamic variables of the two states.

We first consider AS for a system undergoing a reversible process at a constant temperature. In this case, the change in
entropy of the system is given by

_0 (4.8)
AS = T

where Q is the heat exchanged by the system kept at a temperature T (in kelvin). If the system absorbs heat—that is, with
QO > 0 —the entropy of the system increases. As an example, suppose a gas is kept at a constant temperature of 300 K

while it absorbs 10 J of heat in a reversible process. Then from Equation 4.8, the entropy change of the gas is

__10J _
AS = 300K = 0.033 J/K.

Similarly, if the gas loses 5.0 J of heat; that is, O = —5.01J, at temperature 7" = 200 K, we have the entropy change of the

system given by

AS =30 _ 025K,

Example 4.4

Entropy Change of Melting Ice

Heat is slowly added to a 50-g chunk of ice at 0 °C until it completely melts into water at the same temperature.
What is the entropy change of the ice?

Strategy

Because the process is slow, we can approximate it as a reversible process. The temperature is a constant, and we
can therefore use Equation 4.8 in the calculation.

Solution
The ice is melted by the addition of heat:
QO =mL;=50gx335]/g =16.8KkI.

In this reversible process, the temperature of the ice-water mixture is fixed at 0°C or 273 K. Now from
AS = Q/T , the entropy change of the ice is

_168KkJ _
AS = 773K =61.5J/K

when it melts to water at 0 °C.
Significance

During a phase change, the temperature is constant, allowing us to use Equation 4.8 to solve this problem. The
same equation could also be used if we changed from a liquid to a gas phase, since the temperature does not
change during that process either.

The change in entropy of a system for an arbitrary, reversible transition for which the temperature is not necessarily constant
is defined by modifying AS = Q/T . Imagine a system making a transition from state A to B in small, discrete steps. The

temperatures associated with these states are 74 and T, respectively. During each step of the transition, the system
exchanges heat AQ); reversibly at a temperature 7';. This can be accomplished experimentally by placing the system in
thermal contact with a large number of heat reservoirs of varying temperatures 7, as illustrated in Figure 4.15. The

change in entropy for each step is AS; = Q;/T;. The net change in entropy of the system for the transition is
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AQ; (4.9)
AS=Sp—S,= D, AS;= D T
l

1

We now take the limit as AQ; — 0, and the number of steps approaches infinity. Then, replacing the summation by an

integral, we obtain

B (4.10)
AS:SB—SA=J %,
A

where the integral is taken between the initial state A and the final state B. This equation is valid only if the transition from
Ato B is reversible.

Figure 4.15 The gas expands at constant pressure as its temperature is increased in small steps through the
use of a series of heat reservoirs.

As an example, let us determine the net entropy change of a reversible engine while it undergoes a single Carnot cycle. In the

adiabatic steps 2 and 4 of the cycle shown in Figure 4.11, no heat exchange takes place, so AS, = AS, = / dQIT = 0.

In step 1, the engine absorbs heat Q, at a temperature 7}, so its entropy change is AS; = Q,/T},. Similarly, in step 3,

AS5 = —Q./T. The net entropy change of the engine in one cycle of operation is then

ASp= AS) +AS, +AS; +AS, = 20 e
h C

However, we know that for a Carnot engine,

On _ Q¢
T, To
SO

There is no net change in the entropy of the Carnot engine over a complete cycle. Although this result was obtained for
a particular case, its validity can be shown to be far more general: There is no net change in the entropy of a system
undergoing any complete reversible cyclic process. Mathematically, we write this statement as

¢-dS _ yngQ -0 (4.11)

where 55 represents the integral over a closed reversible path.
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We can use Equation 4.11 to show that the entropy change of a system undergoing a reversible process between two given
states is path independent. An arbitrary, closed path for a reversible cycle that passes through the states A and B is shown

in Figure 4.16. From Equation 4.11, %dS = 0 for this closed path. We may split this integral into two segments, one

along I, which leads from A to B, the other along II, which leads from B to A. Then

[ fABdS]I + [ /BAdS] =0

Since the process is reversible,

[ fABdS]I = [ fABdS]H.

Figure 4.16 The closed loop passing through states A and B
represents a reversible cycle.

Hence, the entropy change in going from A to B is the same for paths I and II. Since paths I and II are arbitrary, reversible
paths, the entropy change in a transition between two equilibrium states is the same for all the reversible processes joining
these states. Entropy, like internal energy, is therefore a state function.

What happens if the process is irreversible? When the process is irreversible, we expect the entropy of a closed system, or
the system and its environment (the universe), to increase. Therefore we can rewrite this expression as

AS >0, (4.12)

where S is the total entropy of the closed system or the entire universe, and the equal sign is for a reversible process. The
fact is the entropy statement of the second law of thermodynamics:

Second Law of Thermodynamics (Entropy statement)

The entropy of a closed system and the entire universe never decreases.

We can show that this statement is consistent with the Kelvin statement, the Clausius statement, and the Carnot principle.

Example 4.5

Entropy Change of a System during an Isobaric Process

Determine the entropy change of an object of mass m and specific heat c that is cooled rapidly (and irreversibly)
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at constant pressure from T}, to T¢.

Strategy

The process is clearly stated as an irreversible process; therefore, we cannot simply calculate the entropy change
from the actual process. However, because entropy of a system is a function of state, we can imagine a reversible
process that starts from the same initial state and ends at the given final state. Then, the entropy change of the

B
system is given by Equation 4.10, AS = / doIT.
A

Solution

To replace this rapid cooling with a process that proceeds reversibly, we imagine that the hot object is put into
thermal contact with successively cooler heat reservoirs whose temperatures range from 7}, to T.. Throughout

the substitute transition, the object loses infinitesimal amounts of heat dQ, so we have

Tcd
AS = J @
Ty

From the definition of heat capacity, an infinitesimal exchange dQ for the object is related to its temperature
change dT by
dQ = mcdT.

Substituting this dQ into the expression for AS, we obtain the entropy change of the object as it is cooled at
constant pressure from 7}, to 7 :

T
‘medl _ o Te

AS:JTh T T,

Note that AS < 0 here because T < T}. In other words, the object has lost some entropy. But if we count

whatever is used to remove the heat from the object, we would still end up with AS > 0 because the

universe
process is irreversible.
Significance

If the temperature changes during the heat flow, you must keep it inside the integral to solve for the change in
entropy. If, however, the temperature is constant, you can simply calculate the entropy change as the heat flow
divided by the temperature.

Example 4.6

Stirling Engine
The steps of a reversible Stirling engine are as follows. For this problem, we will use 0.0010 mol of a monatomic

gas that starts at a temperature of 133 °C and a volume of 0.10 m?, which will be called point A. Then it goes
through the following steps:

1. Step AB: isothermal expansion at 133 °C from 0.10 m? to 0.20m?
2. Step BC: isochoric cooling to 33 °C
3. Step CD: isothermal compression at 33 °C from 0.20 m? to 0.10 m?

4. Step DA: isochoric heating back to 133 °C and 0.10 m?

(a) Draw the pV diagram for the Stirling engine with proper labels.
(b) Fill in the following table.
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Step W@ Q@)  AS (IIK)

Step AB
Step BC
Step CD
Step DA

Complete cycle

(c) How does the efficiency of the Stirling engine compare to the Carnot engine working within the same two
heat reservoirs?

Strategy

Using the ideal gas law, calculate the pressure at each point so that they can be labeled on the pV diagram.
1%

Isothermal work is calculated using W = nRT ln(V—Q), and an isochoric process has no work done. The

heat flow is calculated from the first law of thermodynamics, Q = AE;,,— W where AE;, = %nRAT for
monatomic gasses. Isothermal steps have a change in entropy of Q/T, whereas isochoric steps have

T
AS = %nR ln(T—z). The efficiency of a heat engine is calculated by using eg;. = W/Qy,.
1

Solution
a. The graph is shown below.

b. The complet