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Figure 4.1 A xenon ion engine from the Jet Propulsion Laboratory shows the faint blue glow of charged atoms emitted from
the engine. The ion propulsion engine is the first nonchemical propulsion to be used as the primary means of propelling a
spacecraft.
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Introduction
According to the first law of thermodynamics, the only processes that can occur are those that conserve energy. But this
cannot be the only restriction imposed by nature, because many seemingly possible thermodynamic processes that would
conserve energy do not occur. For example, when two bodies are in thermal contact, heat never flows from the colder body
to the warmer one, even though this is not forbidden by the first law. So some other thermodynamic principles must be
controlling the behavior of physical systems.

One such principle is the second law of thermodynamics, which limits the use of energy within a source. Energy cannot
arbitrarily pass from one object to another, just as we cannot transfer heat from a cold object to a hot one without doing
any work. We cannot unmix cream from coffee without a chemical process that changes the physical characteristics of the
system or its environment. We cannot use internal energy stored in the air to propel a car, or use the energy of the ocean to
run a ship, without disturbing something around that object.

In the chapter covering the first law of thermodynamics, we started our discussion with a joke by C. P. Snow stating that
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the first law means “you can’t win.” He paraphrased the second law as “you can’t break even, except on a very cold day.”
Unless you are at zero kelvin, you cannot convert 100% of thermal energy into work. We start by discussing spontaneous
processes and explain why some processes require work to occur even if energy would have been conserved.

4.1 | Reversible and Irreversible Processes

Learning Objectives

By the end of this section, you will be able to:

• Define reversible and irreversible processes

• State the second law of thermodynamics via an irreversible process

Consider an ideal gas that is held in half of a thermally insulated container by a wall in the middle of the container. The
other half of the container is under vacuum with no molecules inside. Now, if we remove the wall in the middle quickly, the
gas expands and fills up the entire container immediately, as shown in Figure 4.2.

Figure 4.2 A gas expanding from half of a container to the entire container (a) before and (b) after the wall in the middle is
removed.

Because half of the container is under vacuum before the gas expands there, we do not expect any work to be done by the
system—that is, W = 0 —because no force from the vacuum is exerted on the gas during the expansion. If the container

is thermally insulated from the rest of the environment, we do not expect any heat transfer to the system either, so Q = 0 .

Then the first law of thermodynamics leads to the change of the internal energy of the system,

ΔEint = Q − W = 0.

For an ideal gas, if the internal energy doesn’t change, then the temperature stays the same. Thus, the equation of state of
the ideal gas gives us the final pressure of the gas, p = nRT /V = p0 /2, where p0 is the pressure of the gas before the

expansion. The volume is doubled and the pressure is halved, but nothing else seems to have changed during the expansion.

All of this discussion is based on what we have learned so far and makes sense. Here is what puzzles us: Can all the
molecules go backward to the original half of the container in some future time? Our intuition tells us that this is going to be
very unlikely, even though nothing we have learned so far prevents such an event from happening, regardless of how small
the probability is. What we are really asking is whether the expansion into the vacuum half of the container is reversible.

A reversible process is a process in which the system and environment can be restored to exactly the same initial states that
they were in before the process occurred, if we go backward along the path of the process. The necessary condition for a
reversible process is therefore the quasi-static requirement. Note that it is quite easy to restore a system to its original state;
the hard part is to have its environment restored to its original state at the same time. For example, in the example of an ideal
gas expanding into vacuum to twice its original volume, we can easily push it back with a piston and restore its temperature
and pressure by removing some heat from the gas. The problem is that we cannot do it without changing something in its
surroundings, such as dumping some heat there.

A reversible process is truly an ideal process that rarely happens. We can make certain processes close to reversible and
therefore use the consequences of the corresponding reversible processes as a starting point or reference. In reality, almost
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all processes are irreversible, and some properties of the environment are altered when the properties of the system are
restored. The expansion of an ideal gas, as we have just outlined, is irreversible because the process is not even quasi-static,
that is, not in an equilibrium state at any moment of the expansion.

From the microscopic point of view, a particle described by Newton’s second law can go backward if we flip the direction

of time. But this is not the case, in practical terms, in a macroscopic system with more than 1023 particles or molecules,

where numerous collisions between these molecules tend to erase any trace of memory of the initial trajectory of each of
the particles. For example, we can actually estimate the chance for all the particles in the expanded gas to go back to the
original half of the container, but the current age of the universe is still not long enough for it to happen even once.

An irreversible process is what we encounter in reality almost all the time. The system and its environment cannot be
restored to their original states at the same time. Because this is what happens in nature, it is also called a natural process.
The sign of an irreversible process comes from the finite gradient between the states occurring in the actual process. For
example, when heat flows from one object to another, there is a finite temperature difference (gradient) between the two
objects. More importantly, at any given moment of the process, the system most likely is not at equilibrium or in a well-
defined state. This phenomenon is called irreversibility.

Let us see another example of irreversibility in thermal processes. Consider two objects in thermal contact: one at
temperature T1 and the other at temperature T2 > T1 , as shown in Figure 4.3.

Figure 4.3 Spontaneous heat flow from an object at higher
temperature T2 to another at lower temperature T1.

We know from common personal experience that heat flows from a hotter object to a colder one. For example, when we
hold a few pieces of ice in our hands, we feel cold because heat has left our hands into the ice. The opposite is true when
we hold one end of a metal rod while keeping the other end over a fire. Based on all of the experiments that have been done
on spontaneous heat transfer, the following statement summarizes the governing principle:

Second Law of Thermodynamics (Clausius statement)

Heat never flows spontaneously from a colder object to a hotter object.

This statement turns out to be one of several different ways of stating the second law of thermodynamics. The form of this
statement is credited to German physicist Rudolf Clausius (1822−1888) and is referred to as the Clausius statement of the
second law of thermodynamics. The word “spontaneously” here means no other effort has been made by a third party, or
one that is neither the hotter nor colder object. We will introduce some other major statements of the second law and show
that they imply each other. In fact, all the different statements of the second law of thermodynamics can be shown to be
equivalent, and all lead to the irreversibility of spontaneous heat flow between macroscopic objects of a very large number
of molecules or particles.

Both isothermal and adiabatic processes sketched on a pV graph (discussed in The First Law of Thermodynamics) are
reversible in principle because the system is always at an equilibrium state at any point of the processes and can go forward
or backward along the given curves. Other idealized processes can be represented by pV curves; Table 4.1 summarizes the
most common reversible processes.

Process Constant Quantity and Resulting Fact

Isobaric Constant pressure W = pΔV

Isochoric Constant volume W = 0

Table 4.1 Summary of Simple Thermodynamic Processes
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Process Constant Quantity and Resulting Fact

Isothermal Constant temperature ΔT = 0

Adiabatic No heat transfer Q = 0

Table 4.1 Summary of Simple Thermodynamic Processes

4.2 | Heat Engines

Learning Objectives

By the end of this section, you will be able to:

• Describe the function and components of a heat engine

• Explain the efficiency of an engine

• Calculate the efficiency of an engine for a given cycle of an ideal gas

A heat engine is a device used to extract heat from a source and then convert it into mechanical work that is used for
all sorts of applications. For example, a steam engine on an old-style train can produce the work needed for driving the
train. Several questions emerge from the construction and application of heat engines. For example, what is the maximum
percentage of the heat extracted that can be used to do work? This turns out to be a question that can only be answered
through the second law of thermodynamics.

The second law of thermodynamics can be formally stated in several ways. One statement presented so far is about the
direction of spontaneous heat flow, known as the Clausius statement. A couple of other statements are based on heat engines.
Whenever we consider heat engines and associated devices such as refrigerators and heat pumps, we do not use the normal
sign convention for heat and work. For convenience, we assume that the symbols Qh, Qc, and W represent only the

amounts of heat transferred and work delivered, regardless what the givers or receivers are. Whether heat is entering or
leaving a system and work is done to or by a system are indicated by proper signs in front of the symbols and by the
directions of arrows in diagrams.

It turns out that we need more than one heat source/sink to construct a heat engine. We will come back to this point later
in the chapter, when we compare different statements of the second law of thermodynamics. For the moment, we assume
that a heat engine is constructed between a heat source (high-temperature reservoir or hot reservoir) and a heat sink (low-
temperature reservoir or cold reservoir), represented schematically in Figure 4.4. The engine absorbs heat Qh from a heat

source ( hot reservoir) of Kelvin temperature Th, uses some of that energy to produce useful work W, and then discards

the remaining energy as heat Qc into a heat sink ( cold reservoir) of Kelvin temperature Tc. Power plants and internal

combustion engines are examples of heat engines. Power plants use steam produced at high temperature to drive electric
generators, while exhausting heat to the atmosphere or a nearby body of water in the role of the heat sink. In an internal
combustion engine, a hot gas-air mixture is used to push a piston, and heat is exhausted to the nearby atmosphere in a similar
manner.
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Figure 4.4 A schematic representation of a heat engine.
Energy flows from the hot reservoir to the cold reservoir while
doing work.

Actual heat engines have many different designs. Examples include internal combustion engines, such as those used in most
cars today, and external combustion engines, such as the steam engines used in old steam-engine trains. Figure 4.5 shows
a photo of a nuclear power plant in operation. The atmosphere around the reactors acts as the cold reservoir, and the heat
generated from the nuclear reaction provides the heat from the hot reservoir.

Figure 4.5 The heat exhausted from a nuclear power plant
goes to the cooling towers, where it is released into the
atmosphere.

Heat engines operate by carrying a working substance through a cycle. In a steam power plant, the working substance is
water, which starts as a liquid, becomes vaporized, is then used to drive a turbine, and is finally condensed back into the
liquid state. As is the case for all working substances in cyclic processes, once the water returns to its initial state, it repeats
the same sequence.

For now, we assume that the cycles of heat engines are reversible, so there is no energy loss to friction or other irreversible
effects. Suppose that the engine of Figure 4.4 goes through one complete cycle and that Qh, Qc, and W represent the

heats exchanged and the work done for that cycle. Since the initial and final states of the system are the same, ΔEint = 0
for the cycle. We therefore have from the first law of thermodynamics,

W = Q − ΔEint = (Qh − Qc) − 0,

so that

(4.1)W = Qh − Qc.

The most important measure of a heat engine is its efficiency (e), which is simply “what we get out” divided by “what we
put in” during each cycle, as defined by e = Wout /Qin.
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With a heat engine working between two heat reservoirs, we get out W and put in Qh, so the efficiency of the engine is

(4.2)e = W
Qh

= 1 − Qc
Qh

.

Here, we used Equation 4.1, W = Qh − Qc, in the final step of this expression for the efficiency.

Example 4.1

A Lawn Mower

A lawn mower is rated to have an efficiency of 25.0% and an average power of 3.00 kW. What are (a) the

average work and (b) the minimum heat discharge into the air by the lawn mower in one minute of use?

Strategy

From the average power—that is, the rate of work production—we can figure out the work done in the given
elapsed time. Then, from the efficiency given, we can figure out the minimum heat discharge Qc = Qh(1 − e)
with Qh = Qc + W.

Solution
a. The average work delivered by the lawn mower is

W = PΔt = 3.00 × 103 × 60 × 1.00 J = 180 kJ.
b. The minimum heat discharged into the air is given by

Qc = Qh(1 − e) = (Qc + W)(1 − e),

which leads to

Qc = W(1/e − 1) = 180 × (1/0.25 − 1) kJ = 540 kJ.

Significance

As the efficiency rises, the minimum heat discharged falls. This helps our environment and atmosphere by not
having as much waste heat expelled.

4.3 | Refrigerators and Heat Pumps

Learning Objectives

By the end of this section, you will be able to:

• Describe a refrigerator and a heat pump and list their differences

• Calculate the performance coefficients of simple refrigerators and heat pumps

The cycles we used to describe the engine in the preceding section are all reversible, so each sequence of steps can just as
easily be performed in the opposite direction. In this case, the engine is known as a refrigerator or a heat pump, depending
on what is the focus: the heat removed from the cold reservoir or the heat dumped to the hot reservoir. Either a refrigerator
or a heat pump is an engine running in reverse. For a refrigerator, the focus is on removing heat from a specific area. For
a heat pump, the focus is on dumping heat to a specific area.

We first consider a refrigerator (Figure 4.6). The purpose of this engine is to remove heat from the cold reservoir, which
is the space inside the refrigerator for an actual household refrigerator or the space inside a building for an air-conditioning
unit.
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Figure 4.6 A schematic representation of a refrigerator (or a
heat pump). The arrow next to work (W) indicates work being
put into the system.

A refrigerator (or heat pump) absorbs heat Qc from the cold reservoir at Kelvin temperature Tc and discards heat Qh

to the hot reservoir at Kelvin temperature Th, while work W is done on the engine’s working substance, as shown by

the arrow pointing toward the system in the figure. A household refrigerator removes heat from the food within it while
exhausting heat to the surrounding air. The required work, for which we pay in our electricity bill, is performed by the motor
that moves a coolant through the coils. A schematic sketch of a household refrigerator is given in Figure 4.7.
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Figure 4.7 A schematic diagram of a household refrigerator. A coolant with a
boiling temperature below the freezing point of water is sent through the cycle
(clockwise in this diagram). The coolant extracts heat from the refrigerator at the
evaporator, causing coolant to vaporize. It is then compressed and sent through the
condenser, where it exhausts heat to the outside.

The effectiveness or coefficient of performance KR of a refrigerator is measured by the heat removed from the cold

reservoir divided by the work done by the working substance cycle by cycle:

(4.3)KR = Qc
W = Qc

Qh − Qc
.

Note that we have used the condition of energy conservation, W = Qh − Qc, in the final step of this expression.

The effectiveness or coefficient of performance KP of a heat pump is measured by the heat dumped to the hot reservoir

divided by the work done to the engine on the working substance cycle by cycle:

(4.4)KP = Qh
W = Qh

Qh − Qc
.
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Once again, we use the energy conservation condition W = Qh − Qc to obtain the final step of this expression.

4.4 | Statements of the Second Law of Thermodynamics

Learning Objectives

By the end of this section, you will be able to:

• Contrast the second law of thermodynamics statements according to Kelvin and Clausius
formulations

• Interpret the second of thermodynamics via irreversibility

Earlier in this chapter, we introduced the Clausius statement of the second law of thermodynamics, which is based on
the irreversibility of spontaneous heat flow. As we remarked then, the second law of thermodynamics can be stated in
several different ways, and all of them can be shown to imply the others. In terms of heat engines, the second law of
thermodynamics may be stated as follows:

Second Law of Thermodynamics (Kelvin statement)

It is impossible to convert the heat from a single source into work without any other effect.

This is known as the Kelvin statement of the second law of thermodynamics. This statement describes an unattainable
“ perfect engine,” as represented schematically in Figure 4.8(a). Note that “without any other effect” is a very strong
restriction. For example, an engine can absorb heat and turn it all into work, but not if it completes a cycle. Without
completing a cycle, the substance in the engine is not in its original state and therefore an “other effect” has occurred.
Another example is a chamber of gas that can absorb heat from a heat reservoir and do work isothermally against a piston
as it expands. However, if the gas were returned to its initial state (that is, made to complete a cycle), it would have to be
compressed and heat would have to be extracted from it.

The Kelvin statement is a manifestation of a well-known engineering problem. Despite advancing technology, we are not
able to build a heat engine that is 100% efficient. The first law does not exclude the possibility of constructing a perfect

engine, but the second law forbids it.

Figure 4.8 (a) A “perfect heat engine” converts all input heat into work. (b) A “perfect
refrigerator” transports heat from a cold reservoir to a hot reservoir without work input. Neither
of these devices is achievable in reality.

We can show that the Kelvin statement is equivalent to the Clausius statement if we view the two objects in the Clausius
statement as a cold reservoir and a hot reservoir. Thus, the Clausius statement becomes: It is impossible to construct a
refrigerator that transfers heat from a cold reservoir to a hot reservoir without aid from an external source. The Clausius
statement is related to the everyday observation that heat never flows spontaneously from a cold object to a hot object. Heat
transfer in the direction of increasing temperature always requires some energy input. A “ perfect refrigerator,” shown in
Figure 4.8(b), which works without such external aid, is impossible to construct.
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To prove the equivalence of the Kelvin and Clausius statements, we show that if one statement is false, it necessarily follows
that the other statement is also false. Let us first assume that the Clausius statement is false, so that the perfect refrigerator
of Figure 4.8(b) does exist. The refrigerator removes heat Q from a cold reservoir at a temperature Tc and transfers all

of it to a hot reservoir at a temperature Th. Now consider a real heat engine working in the same temperature range. It

extracts heat Q + ΔQ from the hot reservoir, does work W, and discards heat Q to the cold reservoir. From the first law,

these quantities are related by W = (Q + ΔQ) − Q = ΔQ .

Suppose these two devices are combined as shown in Figure 4.9. The net heat removed from the hot reservoir is ΔQ ,

no net heat transfer occurs to or from the cold reservoir, and work W is done on some external body. Since W = ΔQ , the

combination of a perfect refrigerator and a real heat engine is itself a perfect heat engine, thereby contradicting the Kelvin
statement. Thus, if the Clausius statement is false, the Kelvin statement must also be false.

Figure 4.9 Combining a perfect refrigerator and a real heat
engine yields a perfect heat engine because W = ΔQ.

Using the second law of thermodynamics, we now prove two important properties of heat engines operating between two
heat reservoirs. The first property is that any reversible engine operating between two reservoirs has a greater efficiency
than any irreversible engine operating between the same two reservoirs.

The second property to be demonstrated is that all reversible engines operating between the same two reservoirs have the
same efficiency. To show this, we start with the two engines D and E of Figure 4.10(a), which are operating between
two common heat reservoirs at temperatures Th and Tc. First, we assume that D is a reversible engine and that E is a

hypothetical irreversible engine that has a higher efficiency than D. If both engines perform the same amount of work W
per cycle, it follows from Equation 4.2 that Qh > Qh′ . It then follows from the first law that Qc > Qc′ .

Figure 4.10 (a) Two uncoupled engines D and E working between the same reservoirs. (b) The coupled engines, with D
working in reverse.

Suppose the cycle of D is reversed so that it operates as a refrigerator, and the two engines are coupled such that the work
output of E is used to drive D, as shown in Figure 4.10(b). Since Qh > Qh′ and Qc > Qc′ , the net result of each cycle is
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4.1

4.2

equivalent to a spontaneous transfer of heat from the cold reservoir to the hot reservoir, a process the second law does not
allow. The original assumption must therefore be wrong, and it is impossible to construct an irreversible engine such that E
is more efficient than the reversible engine D.

Now it is quite easy to demonstrate that the efficiencies of all reversible engines operating between the same reservoirs are
equal. Suppose that D and E are both reversible engines. If they are coupled as shown in Figure 4.10(b), the efficiency
of E cannot be greater than the efficiency of D, or the second law would be violated. If both engines are then reversed, the
same reasoning implies that the efficiency of D cannot be greater than the efficiency of E. Combining these results leads to
the conclusion that all reversible engines working between the same two reservoirs have the same efficiency.

Check Your Understanding What is the efficiency of a perfect heat engine? What is the coefficient of
performance of a perfect refrigerator?

Check Your Understanding Show that Qh − Qh′ = Qc − Qc′ for the hypothetical engine of Figure

4.10(b).

4.5 | The Carnot Cycle

Learning Objectives
• Describe the Carnot cycle with the roles of all four processes involved

• Outline the Carnot principle and its implications

• Demonstrate the equivalence of the Carnot principle and the second law of thermodynamics

In the early 1820s, Sadi Carnot (1786−1832), a French engineer, became interested in improving the efficiencies of practical
heat engines. In 1824, his studies led him to propose a hypothetical working cycle with the highest possible efficiency
between the same two reservoirs, known now as the Carnot cycle. An engine operating in this cycle is called a Carnot
engine. The Carnot cycle is of special importance for a variety of reasons. At a practical level, this cycle represents a
reversible model for the steam power plant and the refrigerator or heat pump. Yet, it is also very important theoretically,
for it plays a major role in the development of another important statement of the second law of thermodynamics. Finally,
because only two reservoirs are involved in its operation, it can be used along with the second law of thermodynamics to
define an absolute temperature scale that is truly independent of any substance used for temperature measurement.

With an ideal gas as the working substance, the steps of the Carnot cycle, as represented by Figure 4.11, are as follows.

1. Isothermal expansion. The gas is placed in thermal contact with a heat reservoir at a temperature Th. The gas

absorbs heat Qh from the heat reservoir and is allowed to expand isothermally, doing work W1. Because the

internal energy Eint of an ideal gas is a function of the temperature only, the change of the internal energy is zero,

that is, ΔEint = 0 during this isothermal expansion. With the first law of thermodynamics, ΔEint = Q − W, we

find that the heat absorbed by the gas is

Qh = W1 = nRTh lnVN
VM

.
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Figure 4.11 The four processes of the Carnot cycle. The working substance is assumed to be an
ideal gas whose thermodynamic path MNOP is represented in Figure 4.12.

Figure 4.12 The total work done by the gas in the Carnot cycle
is shown and given by the area enclosed by the loop MNOPM.

2. Adiabatic expansion. The gas is thermally isolated and allowed to expand further, doing work W2. Because this

expansion is adiabatic, the temperature of the gas falls—in this case, from Th to Tc. From pV γ = constant and

the equation of state for an ideal gas, pV = nRT , we have

TV γ − 1 = constant,

so that

Th VN
γ − 1 = Tc VO

γ − 1.
3. Isothermal compression. The gas is placed in thermal contact with a cold reservoir at temperature Tc and

compressed isothermally. During this process, work W3 is done on the gas and it gives up heat Qc to the cold

reservoir. The reasoning used in step 1 now yields

Qc = nRTc lnVO
VP

,
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where Qc is the heat dumped to the cold reservoir by the gas.

4. Adiabatic compression. The gas is thermally isolated and returned to its initial state by compression. In this process,
work W4 is done on the gas. Because the compression is adiabatic, the temperature of the gas rises—from

Tc to Th in this particular case. The reasoning of step 2 now gives

Tc VP
γ − 1 = Th VM

γ − 1.

The total work done by the gas in the Carnot cycle is given by

W = W1 + W2 − W3 − W4.

This work is equal to the area enclosed by the loop shown in the pV diagram of Figure 4.12. Because the initial and final
states of the system are the same, the change of the internal energy of the gas in the cycle must be zero, that is, ΔEint = 0 .

The first law of thermodynamics then gives

W = Q − ΔEint = (Qh − Qc) − 0,

and

W = Qh − Qc.

To find the efficiency of this engine, we first divide Qc by Qh :

Qc
Qh

= Tc
Th

lnVO/VP
lnVN/VM

.

When the adiabatic constant from step 2 is divided by that of step 4, we find

VO
VP

= VN
VM

.

Substituting this into the equation for Qc/Qh, we obtain

Qc
Qh

= Tc
Th

.

Finally, with Equation 4.2, we find that the efficiency of this ideal gas Carnot engine is given by

(4.5)e = 1 − Tc
Th

.

An engine does not necessarily have to follow a Carnot engine cycle. All engines, however, have the same net effect,
namely the absorption of heat from a hot reservoir, the production of work, and the discarding of heat to a cold reservoir.
This leads us to ask: Do all reversible cycles operating between the same two reservoirs have the same efficiency? The
answer to this question comes from the second law of thermodynamics discussed earlier: All reversible engine cycles
produce exactly the same efficiency. Also, as you might expect, all real engines operating between two reservoirs are less
efficient than reversible engines operating between the same two reservoirs. This too is a consequence of the second law of
thermodynamics shown earlier.

The cycle of an ideal gas Carnot refrigerator is represented by the pV diagram of Figure 4.13. It is a Carnot engine
operating in reverse. The refrigerator extracts heat Qc from a cold-temperature reservoir at Tc when the ideal gas

expands isothermally. The gas is then compressed adiabatically until its temperature reaches Th, after which an isothermal

compression of the gas results in heat Qh being discarded to a high-temperature reservoir at Th. Finally, the cycle is

completed by an adiabatic expansion of the gas, causing its temperature to drop to Tc.
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Figure 4.13 The work done on the gas in one cycle of the
Carnot refrigerator is shown and given by the area enclosed by
the loop MPONM.

The work done on the ideal gas is equal to the area enclosed by the path of the pV diagram. From the first law, this work is
given by

W = Qh − Qc.

An analysis just like the analysis done for the Carnot engine gives

Qc
Tc

= Qh
Th

.

When combined with Equation 4.3, this yields

(4.6)KR = Tc
Th − Tc

for the coefficient of performance of the ideal-gas Carnot refrigerator. Similarly, we can work out the coefficient of
performance for a Carnot heat pump as

(4.7)KP = Qh
Qh − Qc

= Th
Th − Tc

.

We have just found equations representing the efficiency of a Carnot engine and the coefficient of performance of a Carnot
refrigerator or a Carnot heat pump, assuming an ideal gas for the working substance in both devices. However, these
equations are more general than their derivations imply. We will soon show that they are both valid no matter what the
working substance is.

Carnot summarized his study of the Carnot engine and Carnot cycle into what is now known as Carnot’s principle:

Carnot’s Principle

No engine working between two reservoirs at constant temperatures can have a greater efficiency than a reversible
engine.

This principle can be viewed as another statement of the second law of thermodynamics and can be shown to be equivalent
to the Kelvin statement and the Clausius statement.
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Example 4.2

The Carnot Engine

A Carnot engine has an efficiency of 0.60 and the temperature of its cold reservoir is 300 K. (a) What is the
temperature of the hot reservoir? (b) If the engine does 300 J of work per cycle, how much heat is removed from
the high-temperature reservoir per cycle? (c) How much heat is exhausted to the low-temperature reservoir per
cycle?

Strategy

From the temperature dependence of the thermal efficiency of the Carnot engine, we can find the temperature
of the hot reservoir. Then, from the definition of the efficiency, we can find the heat removed when the work
done by the engine is given. Finally, energy conservation will lead to how much heat must be dumped to the cold
reservoir.

Solution
a. From e = 1 − Tc /Th we have

0.60 = 1 − 300 K
Th

,

so that the temperature of the hot reservoir is

Th = 300 K
1 − 0.60 = 750 K.

b. By definition, the efficiency of the engine is e = W/Q , so that the heat removed from the high-

temperature reservoir per cycle is

Qh = W
e = 300 J

0.60 = 500 J.

c. From the first law, the heat exhausted to the low-temperature reservoir per cycle by the engine is

Qc = Qh − W = 500 J − 300 J = 200 J.

Significance

A Carnot engine has the maximum possible efficiency of converting heat into work between two reservoirs, but
this does not necessarily mean it is 100% efficient. As the difference in temperatures of the hot and cold reservoir

increases, the efficiency of a Carnot engine increases.

Example 4.3

A Carnot Heat Pump

Imagine a Carnot heat pump operates between an outside temperature of 0 °C and an inside temperature of

20.0 °C . What is the work needed if the heat delivered to the inside of the house is 30.0 kJ?

Strategy

Because the heat pump is assumed to be a Carnot pump, its performance coefficient is given by
KP = Qh /W = Th /(Th − Tc). Thus, we can find the work W from the heat delivered Qh.

Solution

The work needed is obtained from

W = Qh /KP = Qh(Th − Tc)/Th = 30 kJ × (293 K − 273 K)/293 K = 2 kJ.

Significance

We note that this work depends not only on the heat delivered to the house but also on the temperatures
outside and inside. The dependence on the temperature outside makes them impractical to use in areas where the
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4.3

4.4

temperature is much colder outside than room temperature.

In terms of energy costs, the heat pump is a very economical means for heating buildings (Figure 4.14). Contrast this
method with turning electrical energy directly into heat with resistive heating elements. In this case, one unit of electrical
energy furnishes at most only one unit of heat. Unfortunately, heat pumps have problems that do limit their usefulness. They
are quite expensive to purchase compared to resistive heating elements, and, as the performance coefficient for a Carnot
heat pump shows, they become less effective as the outside temperature decreases. In fact, below about –10 °C , the heat

they furnish is less than the energy used to operate them.

Figure 4.14 A photograph of a heat pump (large box) located
outside a house. This heat pump is located in a warm climate
area, like the southern United States, since it would be far too
inefficient located in the northern half of the United States.
(credit: modification of work by Peter Stevens)

Check Your Understanding A Carnot engine operates between reservoirs at 400 °C and 30 °C . (a)

What is the efficiency of the engine? (b) If the engine does 5.0 J of work per cycle, how much heat per cycle
does it absorb from the high-temperature reservoir? (c) How much heat per cycle does it exhaust to the cold-
temperature reservoir? (d) What temperatures at the cold reservoir would give the minimum and maximum
efficiency?

Check Your Understanding A Carnot refrigerator operates between two heat reservoirs whose
temperatures are 0 °C and 25 °C . (a) What is the coefficient of performance of the refrigerator? (b) If 200 J of

work are done on the working substance per cycle, how much heat per cycle is extracted from the cold
reservoir? (c) How much heat per cycle is discarded to the hot reservoir?

4.6 | Entropy

Learning Objectives

By the end of this section you will be able to:

• Describe the meaning of entropy

• Calculate the change of entropy for some simple processes

The second law of thermodynamics is best expressed in terms of a change in the thermodynamic variable known as entropy,
which is represented by the symbol S. Entropy, like internal energy, is a state function. This means that when a system
makes a transition from one state into another, the change in entropy ΔS is independent of path and depends only on the
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thermodynamic variables of the two states.

We first consider ΔS for a system undergoing a reversible process at a constant temperature. In this case, the change in

entropy of the system is given by

(4.8)ΔS = Q
T ,

where Q is the heat exchanged by the system kept at a temperature T (in kelvin). If the system absorbs heat—that is, with
Q > 0 —the entropy of the system increases. As an example, suppose a gas is kept at a constant temperature of 300 K

while it absorbs 10 J of heat in a reversible process. Then from Equation 4.8, the entropy change of the gas is

ΔS = 10 J
300 K = 0.033 J/K.

Similarly, if the gas loses 5.0 J of heat; that is, Q = −5.0 J , at temperature T = 200 K , we have the entropy change of the

system given by

ΔS = −5.0 J
200 K = −0.025 J/K.

Example 4.4

Entropy Change of Melting Ice

Heat is slowly added to a 50-g chunk of ice at 0 °C until it completely melts into water at the same temperature.

What is the entropy change of the ice?

Strategy

Because the process is slow, we can approximate it as a reversible process. The temperature is a constant, and we
can therefore use Equation 4.8 in the calculation.

Solution

The ice is melted by the addition of heat:

Q = mLf = 50 g × 335 J/g = 16.8 kJ.

In this reversible process, the temperature of the ice-water mixture is fixed at 0 °C or 273 K. Now from

ΔS = Q/T , the entropy change of the ice is

ΔS = 16.8 kJ
273 K = 61.5 J/K

when it melts to water at 0 °C .

Significance

During a phase change, the temperature is constant, allowing us to use Equation 4.8 to solve this problem. The
same equation could also be used if we changed from a liquid to a gas phase, since the temperature does not
change during that process either.

The change in entropy of a system for an arbitrary, reversible transition for which the temperature is not necessarily constant
is defined by modifying ΔS = Q/T . Imagine a system making a transition from state A to B in small, discrete steps. The

temperatures associated with these states are TA and TB, respectively. During each step of the transition, the system

exchanges heat ΔQi reversibly at a temperature Ti. This can be accomplished experimentally by placing the system in

thermal contact with a large number of heat reservoirs of varying temperatures Ti , as illustrated in Figure 4.15. The

change in entropy for each step is ΔSi = Qi /Ti. The net change in entropy of the system for the transition is
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(4.9)ΔS = SB − SA = ∑
i

ΔSi = ∑
i

ΔQi
Ti

.

We now take the limit as ΔQi → 0 , and the number of steps approaches infinity. Then, replacing the summation by an

integral, we obtain

(4.10)
ΔS = SB − SA = ⌠

⌡A

B dQ
T ,

where the integral is taken between the initial state A and the final state B. This equation is valid only if the transition from
A to B is reversible.

Figure 4.15 The gas expands at constant pressure as its temperature is increased in small steps through the
use of a series of heat reservoirs.

As an example, let us determine the net entropy change of a reversible engine while it undergoes a single Carnot cycle. In the

adiabatic steps 2 and 4 of the cycle shown in Figure 4.11, no heat exchange takes place, so ΔS2 = ΔS4 = ∫ dQ/T = 0.

In step 1, the engine absorbs heat Qh at a temperature Th, so its entropy change is ΔS1 = Qh /Th. Similarly, in step 3,

ΔS3 = −Qc /Tc. The net entropy change of the engine in one cycle of operation is then

ΔSE = ΔS1 + ΔS2 + ΔS3 + ΔS4 = Qh
Th

− Qc
Tc

.

However, we know that for a Carnot engine,

Qh
Th

= Qc
Tc

,

so

ΔSE = 0.

There is no net change in the entropy of the Carnot engine over a complete cycle. Although this result was obtained for
a particular case, its validity can be shown to be far more general: There is no net change in the entropy of a system
undergoing any complete reversible cyclic process. Mathematically, we write this statement as

(4.11)∮ dS = ∮ dQ
T = 0

where ∮ represents the integral over a closed reversible path.
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We can use Equation 4.11 to show that the entropy change of a system undergoing a reversible process between two given
states is path independent. An arbitrary, closed path for a reversible cycle that passes through the states A and B is shown

in Figure 4.16. From Equation 4.11, ∮ dS = 0 for this closed path. We may split this integral into two segments, one

along I, which leads from A to B, the other along II, which leads from B to A. Then

⎡
⎣∫A

B
dS

⎤
⎦I +

⎡

⎣
⎢∫

B

A
dS

⎤

⎦
⎥ II = 0.

Since the process is reversible,

⎡
⎣∫A

B
dS

⎤
⎦I = ⎡

⎣∫A

B
dS

⎤
⎦II.

Figure 4.16 The closed loop passing through states A and B
represents a reversible cycle.

Hence, the entropy change in going from A to B is the same for paths I and II. Since paths I and II are arbitrary, reversible
paths, the entropy change in a transition between two equilibrium states is the same for all the reversible processes joining
these states. Entropy, like internal energy, is therefore a state function.

What happens if the process is irreversible? When the process is irreversible, we expect the entropy of a closed system, or
the system and its environment (the universe), to increase. Therefore we can rewrite this expression as

(4.12)ΔS ≥ 0,

where S is the total entropy of the closed system or the entire universe, and the equal sign is for a reversible process. The
fact is the entropy statement of the second law of thermodynamics:

Second Law of Thermodynamics (Entropy statement)

The entropy of a closed system and the entire universe never decreases.

We can show that this statement is consistent with the Kelvin statement, the Clausius statement, and the Carnot principle.

Example 4.5

Entropy Change of a System during an Isobaric Process

Determine the entropy change of an object of mass m and specific heat c that is cooled rapidly (and irreversibly)
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at constant pressure from Th to Tc.

Strategy

The process is clearly stated as an irreversible process; therefore, we cannot simply calculate the entropy change
from the actual process. However, because entropy of a system is a function of state, we can imagine a reversible
process that starts from the same initial state and ends at the given final state. Then, the entropy change of the

system is given by Equation 4.10, ΔS = ∫
A

B
dQ/T .

Solution

To replace this rapid cooling with a process that proceeds reversibly, we imagine that the hot object is put into
thermal contact with successively cooler heat reservoirs whose temperatures range from Th to Tc. Throughout

the substitute transition, the object loses infinitesimal amounts of heat dQ, so we have

ΔS = ⌠
⌡Th

TcdQ
T .

From the definition of heat capacity, an infinitesimal exchange dQ for the object is related to its temperature
change dT by

dQ = mc dT .

Substituting this dQ into the expression for ΔS , we obtain the entropy change of the object as it is cooled at

constant pressure from Th to Tc :

ΔS = ⌠
⌡Th

Tcmc dT
T = mc lnTc

Th
.

Note that ΔS < 0 here because Tc < Th. In other words, the object has lost some entropy. But if we count

whatever is used to remove the heat from the object, we would still end up with ΔSuniverse > 0 because the

process is irreversible.

Significance

If the temperature changes during the heat flow, you must keep it inside the integral to solve for the change in
entropy. If, however, the temperature is constant, you can simply calculate the entropy change as the heat flow
divided by the temperature.

Example 4.6

Stirling Engine

The steps of a reversible Stirling engine are as follows. For this problem, we will use 0.0010 mol of a monatomic

gas that starts at a temperature of 133 °C and a volume of 0.10 m3 , which will be called point A. Then it goes

through the following steps:

1. Step AB: isothermal expansion at 133 °C from 0.10 m3 to 0.20 m3

2. Step BC: isochoric cooling to 33 °C

3. Step CD: isothermal compression at 33 °C from 0.20 m3 to 0.10 m3

4. Step DA: isochoric heating back to 133 °C and 0.10 m3

(a) Draw the pV diagram for the Stirling engine with proper labels.

(b) Fill in the following table.
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Step W (J) Q (J) ΔS (J/K)

Step AB

Step BC

Step CD

Step DA

Complete cycle

(c) How does the efficiency of the Stirling engine compare to the Carnot engine working within the same two
heat reservoirs?

Strategy

Using the ideal gas law, calculate the pressure at each point so that they can be labeled on the pV diagram.

Isothermal work is calculated using W = nRT ln⎛
⎝
V2
V1

⎞
⎠, and an isochoric process has no work done. The

heat flow is calculated from the first law of thermodynamics, Q = ΔEint − W where ΔEint = 3
2nRΔT for

monatomic gasses. Isothermal steps have a change in entropy of Q/T, whereas isochoric steps have

ΔS = 3
2nR ln⎛

⎝
T2
T1

⎞
⎠. The efficiency of a heat engine is calculated by using eStir = W/Qh.

Solution
a. The graph is shown below.

b. The completed table is shown below.

Step W (J) Q (J) ΔS (J/K)

Step AB Isotherm 2.3 2.3 0.0057

Step BC Isochoric 0 –1.2 0.0035

Step CD Isotherm –1.8 –1.8 –0.0059

Step DA Isochoric 0 1.2 –0.0035

Complete cycle 0.5 0.5 ~ 0

c. The efficiency of the Stirling heat engine is
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eStir = W/Qh = (QAB + QCD)/(QAB + QDA) = 0.5/4.5 = 0.11.

If this were a Carnot engine operating between the same heat reservoirs, its efficiency would be

eCar = 1 − ⎛
⎝

Tc
Th

⎞
⎠ = 0.25.

Therefore, the Carnot engine would have a greater efficiency than the Stirling engine.

Significance

In the early days of steam engines, accidents would occur due to the high pressure of the steam in the boiler.
Robert Stirling developed an engine in 1816 that did not use steam and therefore was safer. The Stirling engine
was commonly used in the nineteenth century, but developments in steam and internal combustion engines have
made it difficult to broaden the use of the Stirling engine.

The Stirling engine uses compressed air as the working substance, which passes back and forth between two
chambers with a porous plug, called the regenerator, which is made of material that does not conduct heat as well.
In two of the steps, pistons in the two chambers move in phase.

4.7 | Entropy on a Microscopic Scale

Learning Objectives

By the end of this section you will be able to:

• Interpret the meaning of entropy at a microscopic scale

• Calculate a change in entropy for an irreversible process of a system and contrast with the
change in entropy of the universe

• Explain the third law of thermodynamics

We have seen how entropy is related to heat exchange at a particular temperature. In this section, we consider entropy from a
statistical viewpoint. Although the details of the argument are beyond the scope of this textbook, it turns out that entropy can
be related to how disordered or randomized a system is—the more it is disordered, the higher is its entropy. For example, a
new deck of cards is very ordered, as the cards are arranged numerically by suit. In shuffling this new deck, we randomize
the arrangement of the cards and therefore increase its entropy (Figure 4.17). Thus, by picking one card off the top of the
deck, there would be no indication of what the next selected card will be.

Figure 4.17 The entropy of a new deck of cards goes up after
the dealer shuffles them. (credit: “Rommel SK”/YouTube)

The second law of thermodynamics requires that the entropy of the universe increase in any irreversible process. Thus, in
terms of order, the second law may be stated as follows:

In any irreversible process, the universe becomes more disordered. For example, the irreversible free expansion of an ideal
gas, shown in Figure 4.2, results in a larger volume for the gas molecules to occupy. A larger volume means more possible
arrangements for the same number of atoms, so disorder is also increased. As a result, the entropy of the gas has gone
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up. The gas in this case is a closed system, and the process is irreversible. Changes in phase also illustrate the connection
between entropy and disorder.

Example 4.7

Entropy Change of the Universe

Suppose we place 50 g of ice at 0 °C in contact with a heat reservoir at 20 °C . Heat spontaneously flows from

the reservoir to the ice, which melts and eventually reaches a temperature of 20 °C . Find the change in entropy

of (a) the ice and (b) the universe.

Strategy

Because the entropy of a system is a function of its state, we can imagine two reversible processes for the ice:
(1) ice is melted at 0 °C(TA); and (2) melted ice (water) is warmed up from 0 °C to 20 °C(TB) under constant

pressure. Then, we add the change in entropy of the reservoir when we calculate the change in entropy of the
universe.

Solution
a. From Equation 4.10, the increase in entropy of the ice is

ΔSice = ΔS1 + ΔS2

=
mL f
TA

+ mc⌠
⌡A

BdT
T

= ⎛
⎝
50 × 335

273 + 50 × 4.19 × ln293
273

⎞
⎠ J/K

= 76.3 J/K.
b. During this transition, the reservoir gives the ice an amount of heat equal to

Q = mL f + mc(TB − TA)
= 50 × (335 + 4.19 × 20) J
= 2.10 × 104 J.

This leads to a change (decrease) in entropy of the reservoir:

ΔSreservoir = −Q
TB

= −71.7 J/K.

The increase in entropy of the universe is therefore

ΔSuniverse = 76.3 J/K − 71.7 J/K = 4.6 J/K > 0.

Significance

The entropy of the universe therefore is greater than zero since the ice gains more entropy than the reservoir loses.
If we considered only the phase change of the ice into water and not the temperature increase, the entropy change
of the ice and reservoir would be the same, resulting in the universe gaining no entropy.

This process also results in a more disordered universe. The ice changes from a solid with molecules located at specific sites
to a liquid whose molecules are much freer to move. The molecular arrangement has therefore become more randomized.
Although the change in average kinetic energy of the molecules of the heat reservoir is negligible, there is nevertheless a
significant decrease in the entropy of the reservoir because it has many more molecules than the melted ice cube. However,
the reservoir’s decrease in entropy is still not as large as the increase in entropy of the ice. The increased disorder of the ice
more than compensates for the increased order of the reservoir, and the entropy of the universe increases by 4.6 J/K.

You might suspect that the growth of different forms of life might be a net ordering process and therefore a violation of the
second law. After all, a single cell gathers molecules and eventually becomes a highly structured organism, such as a human
being. However, this ordering process is more than compensated for by the disordering of the rest of the universe. The net
result is an increase in entropy and an increase in the disorder of the universe.
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4.5 Check Your Understanding In Example 4.7, the spontaneous flow of heat from a hot object to a cold
object results in a net increase in entropy of the universe. Discuss how this result can be related to an increase in
disorder of the system.

The second law of thermodynamics makes clear that the entropy of the universe never decreases during any thermodynamic
process. For any other thermodynamic system, when the process is reversible, the change of the entropy is given by
ΔS = Q/T . But what happens if the temperature goes to zero, T → 0 ? It turns out this is not a question that can be

answered by the second law.

A fundamental issue still remains: Is it possible to cool a system all the way down to zero kelvin? We understand that
the system must be at its lowest energy state because lowering temperature reduces the kinetic energy of the constituents
in the system. What happens to the entropy of a system at the absolute zero temperature? It turns out the absolute zero
temperature is not reachable—at least, not though a finite number of cooling steps. This is a statement of the third law of
thermodynamics, whose proof requires quantum mechanics that we do not present here. In actual experiments, physicists

have continuously pushed that limit downward, with the lowest temperature achieved at about 1 × 10−10 K in a low-

temperature lab at the Helsinki University of Technology in 2008.

Like the second law of thermodynamics, the third law of thermodynamics can be stated in different ways. One of the
common statements of the third law of thermodynamics is: The absolute zero temperature cannot be reached through any
finite number of cooling steps.

In other words, the temperature of any given physical system must be finite, that is, T > 0 . This produces a very interesting

question in physics: Do we know how a system would behave if it were at the absolute zero temperature?

The reason a system is unable to reach 0 K is fundamental and requires quantum mechanics to fully understand its origin.
But we can certainly ask what happens to the entropy of a system when we try to cool it down to 0 K. Because the amount
of heat that can be removed from the system becomes vanishingly small, we expect that the change in entropy of the system
along an isotherm approaches zero, that is,

(4.13)lim
T → 0

(ΔS)T = 0.

This can be viewed as another statement of the third law, with all the isotherms becoming isentropic, or into a reversible
ideal adiabat. We can put this expression in words: A system becomes perfectly ordered when its temperature approaches
absolute zero and its entropy approaches its absolute minimum.

The third law of thermodynamics puts another limit on what can be done when we look for energy resources. If there could
be a reservoir at the absolute zero temperature, we could have engines with efficiency of 100% , which would, of course,

violate the second law of thermodynamics.

Example 4.8

Entropy Change of an Ideal Gas in Free Expansion

An ideal gas occupies a partitioned volume V1 inside a box whose walls are thermally insulating, as shown in

Figure 4.18(a). When the partition is removed, the gas expands and fills the entire volume V2 of the box, as

shown in part (b). What is the entropy change of the universe (the system plus its environment)?
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Figure 4.18 The adiabatic free expansion of an ideal gas from volume V1 to volume V2 .

Strategy

The adiabatic free expansion of an ideal gas is an irreversible process. There is no change in the internal energy
(and hence temperature) of the gas in such an expansion because no work or heat transfer has happened. Thus, a
convenient reversible path connecting the same two equilibrium states is a slow, isothermal expansion from V1

to V2 . In this process, the gas could be expanding against a piston while in thermal contact with a heat reservoir,

as in step 1 of the Carnot cycle.

Solution

Since the temperature is constant, the entropy change is given by ΔS = Q/T , where

Q = W = ∫
V1

V2
pdV

because ΔEint = 0. Now, with the help of the ideal gas law, we have

Q = nRT⌠
⌡V1

V2
dV
V = nRT lnV2

V1
,

so the change in entropy of the gas is

ΔS = Q
T = nR lnV2

V1
.

Because V2 > V1 , ΔS is positive, and the entropy of the gas has gone up during the free expansion.

Significance

What about the environment? The walls of the container are thermally insulating, so no heat exchange takes place
between the gas and its surroundings. The entropy of the environment is therefore constant during the expansion.
The net entropy change of the universe is then simply the entropy change of the gas. Since this is positive, the
entropy of the universe increases in the free expansion of the gas.

Example 4.9

Entropy Change during Heat Transfer

Heat flows from a steel object of mass 4.00 kg whose temperature is 400 K to an identical object at 300 K.
Assuming that the objects are thermally isolated from the environment, what is the net entropy change of the
universe after thermal equilibrium has been reached?
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4.6

4.7

Strategy

Since the objects are identical, their common temperature at equilibrium is 350 K. To calculate the entropy
changes associated with their transitions, we substitute the irreversible process of the heat transfer by two isobaric,
reversible processes, one for each of the two objects. The entropy change for each object is then given by
ΔS = mc ln(TB /TA).

Solution

Using c = 450 J/kg · K , the specific heat of steel, we have for the hotter object

ΔSh = ⌠
⌡T1

T2mc dT
T = mc lnT2

T1

= (4.00 kg)(450 J/kg · K)ln350 K
400 K = −240 J/K.

Similarly, the entropy change of the cooler object is

ΔSc = (4.00 kg)(450 J/kg · K) ln350 K
300 K = 277 J/K.

The net entropy change of the two objects during the heat transfer is then

ΔSh + ΔSc = 37 J/K.

Significance

The objects are thermally isolated from the environment, so its entropy must remain constant. Thus, the entropy
of the universe also increases by 37 J/K.

Check Your Understanding A quantity of heat Q is absorbed from a reservoir at a temperature Th by a

cooler reservoir at a temperature Tc. What is the entropy change of the hot reservoir, the cold reservoir, and the

universe?

Check Your Understanding A 50-g copper piece at a temperature of 20 °C is placed into a large

insulated vat of water at 100 °C . (a) What is the entropy change of the copper piece when it reaches thermal

equilibrium with the water? (b) What is the entropy change of the water? (c) What is the entropy change of the
universe?

View this site (https://openstaxcollege.org/l/21reversereact) to learn about entropy and microstates. Start
with a large barrier in the middle and 1000 molecules in only the left chamber. What is the total entropy of the
system? Now remove the barrier and let the molecules travel from the left to the right hand side? What is the total
entropy of the system now? Lastly, add heat and note what happens to the temperature. Did this increase entropy
of the system?
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Carnot cycle

Carnot engine

Carnot principle

Clausius statement of the second law of thermodynamics

coefficient of performance

cold reservoir

disorder

efficiency (e)

entropy

entropy statement of the second law of thermodynamics

heat engine

heat pump

hot reservoir

irreversibility

irreversible process

isentropic

Kelvin statement of the second law of thermodynamics

perfect engine

perfect refrigerator (heat pump)

refrigerator

reversible process

third law of thermodynamics

CHAPTER 4 REVIEW

KEY TERMS
cycle that consists of two isotherms at the temperatures of two reservoirs and two adiabatic processes

connecting the isotherms

Carnot heat engine, refrigerator, or heat pump that operates on a Carnot cycle

principle governing the efficiency or performance of a heat device operating on a Carnot cycle: any
reversible heat device working between two reservoirs must have the same efficiency or performance coefficient,
greater than that of an irreversible heat device operating between the same two reservoirs

heat never flows spontaneously from a colder object
to a hotter object

measure of effectiveness of a refrigerator or heat pump

sink of heat used by a heat engine

measure of order in a system; the greater the disorder is, the higher the entropy

output work from the engine over the input heat to the engine from the hot reservoir

state function of the system that changes when heat is transferred between the system and the environment

entropy of a closed system or the entire universe
never decreases

device that converts heat into work

device that delivers heat to a hot reservoir

source of heat used by a heat engine

phenomenon associated with a natural process

process in which neither the system nor its environment can be restored to their original states at
the same time

reversible adiabatic process where the process is frictionless and no heat is transferred

it is impossible to convert the heat from a single source
into work without any other effect

engine that can convert heat into work with 100% efficiency

refrigerator (heat pump) that can remove (dump) heat without any input of work

device that removes heat from a cold reservoir

process in which both the system and the external environment theoretically can be returned to their
original states

absolute zero temperature cannot be reached through any finite number of cooling steps

KEY EQUATIONS
Result of energy conservation W = Qh − Qc

Efficiency of a heat engine e = W
Qh

= 1 − Qc
Qh

Coefficient of performance of a refrigerator KR = Qc
W = Qc

Qh − Qc
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Coefficient of performance of a heat pump KP = Qh
W = Qh

Qh − Qc

Resulting efficiency of a Carnot cycle e = 1 − Tc
Th

Performance coefficient of a reversible refrigerator KR = Tc
Th − Tc

Performance coefficient of a reversible heat pump KP = Th
Th − Tc

Entropy of a system undergoing a reversible process at a constant
temperature

ΔS = Q
T

Change of entropy of a system under a reversible process
ΔS = SB − SA = ∫

A

B
dQ/T

Entropy of a system undergoing any complete reversible cyclic process ∮ dS = ∮ dQ
T = 0

Change of entropy of a closed system under an irreversible process ΔS ≥ 0

Change in entropy of the system along an isotherm lim
T → 0

(ΔS)T = 0

SUMMARY

4.1 Reversible and Irreversible Processes

• A reversible process is one in which both the system and its environment can return to exactly the states they were
in by following the reverse path.

• An irreversible process is one in which the system and its environment cannot return together to exactly the states
that they were in.

• The irreversibility of any natural process results from the second law of thermodynamics.

4.2 Heat Engines

• The work done by a heat engine is the difference between the heat absorbed from the hot reservoir and the heat
discharged to the cold reservoir, that is, W = Qh − Qc.

• The ratio of the work done by the engine and the heat absorbed from the hot reservoir provides the efficiency of the
engine, that is, e = W/Qh = 1 − Qc /Qh.

4.3 Refrigerators and Heat Pumps

• A refrigerator or a heat pump is a heat engine run in reverse.

• The focus of a refrigerator is on removing heat from the cold reservoir with a coefficient of performance KR.

• The focus of a heat pump is on dumping heat to the hot reservoir with a coefficient of performance KP.

4.4 Statements of the Second Law of Thermodynamics

• The Kelvin statement of the second law of thermodynamics: It is impossible to convert the heat from a single source
into work without any other effect.

• The Kelvin statement and Clausius statement of the second law of thermodynamics are equivalent.
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4.5 The Carnot Cycle

• The Carnot cycle is the most efficient engine for a reversible cycle designed between two reservoirs.

• The Carnot principle is another way of stating the second law of thermodynamics.

4.6 Entropy

• The change in entropy for a reversible process at constant temperature is equal to the heat divided by the

temperature. The entropy change of a system under a reversible process is given by ΔS = ∫
A

B
dQ/T .

• A system’s change in entropy between two states is independent of the reversible thermodynamic path taken by the
system when it makes a transition between the states.

4.7 Entropy on a Microscopic Scale

• Entropy can be related to how disordered a system is—the more it is disordered, the higher is its entropy. In any
irreversible process, the universe becomes more disordered.

• According to the third law of thermodynamics, absolute zero temperature is unreachable.

CONCEPTUAL QUESTIONS

4.1 Reversible and Irreversible Processes

1. State an example of a process that occurs in nature that
is as close to reversible as it can be.

4.2 Heat Engines

2. Explain in practical terms why efficiency is defined as
W/Qh.

4.3 Refrigerators and Heat Pumps

3. If the refrigerator door is left open, what happens to the
temperature of the kitchen?

4. Is it possible for the efficiency of a reversible engine
to be greater than 1.0? Is it possible for the coefficient of
performance of a reversible refrigerator to be less than 1.0?

4.4 Statements of the Second Law of

Thermodynamics

5. In the text, we showed that if the Clausius statement is
false, the Kelvin statement must also be false. Now show
the reverse, such that if the Kelvin statement is false, it
follows that the Clausius statement is false.

6. Why don’t we operate ocean liners by extracting heat
from the ocean or operate airplanes by extracting heat from
the atmosphere?

7. Discuss the practical advantages and disadvantages of

heat pumps and electric heating.

8. The energy output of a heat pump is greater than the
energy used to operate the pump. Why doesn’t this
statement violate the first law of thermodynamics?

9. Speculate as to why nuclear power plants are less
efficient than fossil-fuel plants based on temperature
arguments.

10. An ideal gas goes from state (pi, Vi) to state

(pf, Vf) when it is allowed to expand freely. Is it possible

to represent the actual process on a pV diagram? Explain.

4.5 The Carnot Cycle

11. To increase the efficiency of a Carnot engine, should
the temperature of the hot reservoir be raised or lowered?
What about the cold reservoir?

12. How could you design a Carnot engine with 100%
efficiency?

13. What type of processes occur in a Carnot cycle?

4.6 Entropy

14. Does the entropy increase for a Carnot engine for each
cycle?

15. Is it possible for a system to have an entropy change
if it neither absorbs nor emits heat during a reversible
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transition? What happens if the process is irreversible?

4.7 Entropy on a Microscopic Scale

16. Are the entropy changes of the systems in the
following processes positive or negative? (a) water vapor
that condenses on a cold surface; (b) gas in a container that

leaks into the surrounding atmosphere; (c) an ice cube that
melts in a glass of lukewarm water; (d) the lukewarm water
of part (c); (e) a real heat engine performing a cycle; (f)
food cooled in a refrigerator.

17. Discuss the entropy changes in the systems of
Question 21.10 in terms of disorder.

PROBLEMS

4.1 Reversible and Irreversible Processes

18. A tank contains 111.0 g chlorine gas (Cl2), which

is at temperature 82.0 °C and absolute pressure

5.70 × 105 Pa. The temperature of the air outside the tank

is 20.0 °C . The molar mass of Cl2 is 70.9 g/mol. (a)

What is the volume of the tank? (b) What is the internal
energy of the gas? (c) What is the work done by the gas
if the temperature and pressure inside the tank drop to

31.0 °C and 3.80 × 105 Pa , respectively, due to a leak?

19. A mole of ideal monatomic gas at 0 °C and 1.00 atm

is warmed up to expand isobarically to triple its volume.
How much heat is transferred during the process?

20. A mole of an ideal gas at pressure 4.00 atm and
temperature 298 K expands isothermally to double its
volume. What is the work done by the gas?

21. After a free expansion to quadruple its volume, a mole
of ideal diatomic gas is compressed back to its original
volume isobarically and then cooled down to its original
temperature. What is the minimum heat removed from the
gas in the final step to restoring its state?

4.2 Heat Engines

22. An engine is found to have an efficiency of 0.40. If it
does 200 J of work per cycle, what are the corresponding
quantities of heat absorbed and rejected?

23. In performing 100.0 J of work, an engine rejects 50.0
J of heat. What is the efficiency of the engine?

24. An engine with an efficiency of 0.30 absorbs 500 J
of heat per cycle. (a) How much work does it perform per
cycle? (b) How much heat does it reject per cycle?

25. It is found that an engine rejects 100.0 J while
absorbing 125.0 J each cycle of operation. (a) What is
the efficiency of the engine? (b) How much work does it
perform per cycle?

26. The temperature of the cold reservoir of the engine is
300 K. It has an efficiency of 0.30 and absorbs 500 J of heat
per cycle. (a) How much work does it perform per cycle?
(b) How much heat does it reject per cycle?

27. The Kelvin temperature of the hot reservoir of an
engine is twice that of the cold reservoir, and work done by
the engine per cycle is 50 J. Calculate (a) the efficiency of
the engine, (b) the heat absorbed per cycle, and (c) the heat
rejected per cycle.

28. A coal power plant consumes 100,000 kg of coal
per hour and produces 500 MW of power. If the heat of
combustion of coal is 30 MJ/kg, what is the efficiency of
the power plant?

4.3 Refrigerators and Heat Pumps

29. A refrigerator has a coefficient of performance of 3.0.
(a) If it requires 200 J of work per cycle, how much heat
per cycle does it remove the cold reservoir? (b) How much
heat per cycle is discarded to the hot reservoir?

30. During one cycle, a refrigerator removes 500 J from a
cold reservoir and rejects 800 J to its hot reservoir. (a) What
is its coefficient of performance? (b) How much work per
cycle does it require to operate?

31. If a refrigerator discards 80 J of heat per cycle and its
coefficient of performance is 6.0, what are (a) the quantity
off heat it removes per cycle from a cold reservoir and (b)
the amount of work per cycle required for its operation?

32. A refrigerator has a coefficient of performance of 3.0.
(a) If it requires 200 J of work per cycle, how much heat
per cycle does it remove the cold reservoir? (b) How much
heat per cycle is discarded to the hot reservoir?

4.5 The Carnot Cycle

33. The temperature of the cold and hot reservoirs
between which a Carnot refrigerator operates are −73 °C
and 270 °C , respectively. Which is its coefficient of

performance?
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34. Suppose a Carnot refrigerator operates between
Tc and Th. Calculate the amount of work required to

extract 1.0 J of heat from the cold reservoir if (a)
Tc = 7 °C , Th = 27 °C ; (b) Tc = −73 °C ,

Th = 27 °C; (c) Tc = −173 °C , Th = 27 °C ; and (d)

Tc = −273 °C , Th = 27 °C .

35. A Carnot engine operates between reservoirs at 600
and 300 K. If the engine absorbs 100 J per cycle at the hot
reservoir, what is its work output per cycle?

36. A 500-W motor operates a Carnot refrigerator
between −5 °C and 30 °C . (a) What is the amount of heat

per second extracted from the inside of the refrigerator? (b)
How much heat is exhausted to the outside air per second?

37. Sketch a Carnot cycle on a temperature-volume
diagram.

38. A Carnot heat pump operates between 0 °C and

20 °C . How much heat is exhausted into the interior of a

house for every 1.0 J of work done by the pump?

39. An engine operating between heat reservoirs at 20 °C
and 200 °C extracts 1000 J per cycle from the hot

reservoir. (a) What is the maximum possible work that
engine can do per cycle? (b) For this maximum work, how
much heat is exhausted to the cold reservoir per cycle?

40. Suppose a Carnot engine can be operated between two
reservoirs as either a heat engine or a refrigerator. How is
the coefficient of performance of the refrigerator related to
the efficiency of the heat engine?

41. A Carnot engine is used to measure the temperature
of a heat reservoir. The engine operates between the heat
reservoir and a reservoir consisting of water at its triple
point. (a) If 400 J per cycle are removed from the heat
reservoir while 200 J per cycle are deposited in the triple-
point reservoir, what is the temperature of the heat
reservoir? (b) If 400 J per cycle are removed from the
triple-point reservoir while 200 J per cycle are deposited
in the heat reservoir, what is the temperature of the heat
reservoir?

42. What is the minimum work required of a refrigerator
if it is to extract 50 J per cycle from the inside of a freezer
at −10 °C and exhaust heat to the air at 25 °C ?

4.6 Entropy

43. Two hundred joules of heat are removed from a heat
reservoir at a temperature of 200 K. What is the entropy
change of the reservoir?

44. In an isothermal reversible expansion at 27 °C , an

ideal gas does 20 J of work. What is the entropy change of
the gas?

45. An ideal gas at 300 K is compressed isothermally to
one-fifth its original volume. Determine the entropy change
per mole of the gas.

46. What is the entropy change of 10 g of steam at
100 °C when it condenses to water at the same

temperature?

47. A metal rod is used to conduct heat between two
reservoirs at temperatures Th and Tc, respectively. When

an amount of heat Q flows through the rod from the hot to
the cold reservoir, what is the net entropy change of the rod,
the hot reservoir, the cold reservoir, and the universe?

48. For the Carnot cycle of Figure 4.12, what is the
entropy change of the hot reservoir, the cold reservoir, and
the universe?

49. A 5.0-kg piece of lead at a temperature of 600 °C is

placed in a lake whose temperature is 15 °C . Determine

the entropy change of (a) the lead piece, (b) the lake, and
(c) the universe.

50. One mole of an ideal gas doubles its volume in a
reversible isothermal expansion. (a) What is the change in
entropy of the gas? (b) If 1500 J of heat are added in this
process, what is the temperature of the gas?

51. One mole of an ideal monatomic gas is confined to a
rigid container. When heat is added reversibly to the gas, its
temperature changes from T1 to T2. (a) How much heat is

added? (b) What is the change in entropy of the gas?

52. (a) A 5.0-kg rock at a temperature of 20 °C is

dropped into a shallow lake also at 20 °C from a height of

1.0 × 103 m . What is the resulting change in entropy of

the universe? (b) If the temperature of the rock is 100 °C
when it is dropped, what is the change of entropy of the
universe? Assume that air friction is negligible (not a good
assumption) and that c = 860 J/kg · K is the specific heat

of the rock.

4.7 Entropy on a Microscopic Scale

53. A copper rod of cross-sectional area 5.0 cm2 and

length 5.0 m conducts heat from a heat reservoir at 373 K
to one at 273 K. What is the time rate of change of the
universe’s entropy for this process?
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54. Fifty grams of water at 20 °C is heated until it

becomes vapor at 100 °C . Calculate the change in entropy

of the water in this process.

55. Fifty grams of water at 0 °C are changed into vapor

at 100 °C . What is the change in entropy of the water in

this process?

56. In an isochoric process, heat is added to 10 mol of
monoatomic ideal gas whose temperature increases from
273 to 373 K. What is the entropy change of the gas?

57. Two hundred grams of water at 0 °C is brought into

contact with a heat reservoir at 80 °C . After thermal

equilibrium is reached, what is the temperature of the
water? Of the reservoir? How much heat has been
transferred in the process? What is the entropy change of
the water? Of the reservoir? What is the entropy change of
the universe?

58. Suppose that the temperature of the water in the
previous problem is raised by first bringing it to thermal
equilibrium with a reservoir at a temperature of 40 °C
and then with a reservoir at 80 °C . Calculate the entropy

changes of (a) each reservoir, (b) of the water, and (c) of the
universe.

59. Two hundred grams of water at 0 °C is brought into

contact into thermal equilibrium successively with
reservoirs at 20 °C , 40 °C , 60 °C , and 80 °C . (a) What

is the entropy change of the water? (b) Of the reservoir? (c)
What is the entropy change of the universe?

60. (a) Ten grams of H2 O starts as ice at 0 °C . The ice

absorbs heat from the air (just above 0 °C ) until all of it

melts. Calculate the entropy change of the H2 O , of the air,

and of the universe. (b) Suppose that the air in part (a) is at
20 °C rather than 0 °C and that the ice absorbs heat until

it becomes water at 20 °C . Calculate the entropy change

of the H2 O , of the air, and of the universe. (c) Is either of

these processes reversible?

61. The Carnot cycle is represented by the temperature-
entropy diagram shown below. (a) How much heat is
absorbed per cycle at the high-temperature reservoir? (b)
How much heat is exhausted per cycle at the low-
temperature reservoir? (c) How much work is done per
cycle by the engine? (d) What is the efficiency of the
engine?

62. A Carnot engine operating between heat reservoirs
at 500 and 300 K absorbs 1500 J per cycle at the high-
temperature reservoir. (a) Represent the engine’s cycle on
a temperature-entropy diagram. (b) How much work per
cycle is done by the engine?

63. A monoatomic ideal gas (n moles) goes through a
cyclic process shown below. Find the change in entropy of
the gas in each step and the total entropy change over the
entire cycle.

64. A Carnot engine has an efficiency of 0.60. When the
temperature of its cold reservoir changes, the efficiency
drops to 0.55. If initially Tc = 27 °C , determine (a) the

constant value of Th and (b) the final value of Tc .

65. A Carnot engine performs 100 J of work while
rejecting 200 J of heat each cycle. After the temperature of
the hot reservoir only is adjusted, it is found that the engine
now does 130 J of work while discarding the same quantity
of heat. (a) What are the initial and final efficiencies of the
engine? (b) What is the fractional change in the temperature
of the hot reservoir?

66. A Carnot refrigerator exhausts heat to the air, which is
at a temperature of 25 °C . How much power is used by the

refrigerator if it freezes 1.5 g of water per second? Assume
the water is at 0 °C .
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ADDITIONAL PROBLEMS

67. A 300-W heat pump operates between the ground,
whose temperature is 0 °C , and the interior of a house at

22 °C . What is the maximum amount of heat per hour that

the heat pump can supply to the house?

68. An engineer must design a refrigerator that does 300
J of work per cycle to extract 2100 J of heat per cycle
from a freezer whose temperature is −10 °C . What is

the maximum air temperature for which this condition can
be met? Is this a reasonable condition to impose on the
design?

69. A Carnot engine employs 1.5 mol of nitrogen gas
as a working substance, which is considered as an ideal
diatomic gas with γ = 7.5 at the working temperatures of

the engine. The Carnot cycle goes in the cycle ABCDA
with AB being an isothermal expansion. The volume at

points A and C of the cycle are 5.0 × 10−3 m3 and 0.15

L, respectively. The engine operates between two thermal
baths of temperature 500 K and 300 K. (a) Find the values
of volume at B and D. (b) How much heat is absorbed by
the gas in the AB isothermal expansion? (c) How much
work is done by the gas in the AB isothermal expansion? (d)
How much heat is given up by the gas in the CD isothermal
expansion? (e) How much work is done by the gas in the
CD isothermal compression? (f) How much work is done
by the gas in the BC adiabatic expansion? (g) How much
work is done by the gas in the DA adiabatic compression?
(h) Find the value of efficiency of the engine based on
the net work and heat input. Compare this value to the
efficiency of a Carnot engine based on the temperatures of
the two baths.

70. A 5.0-kg wood block starts with an initial speed of
8.0 m/s and slides across the floor until friction stops it.
Estimate the resulting change in entropy of the universe.
Assume that everything stays at a room temperature of
20 °C .

71. A system consisting of 20.0 mol of a monoatomic
ideal gas is cooled at constant pressure from a volume of
50.0 L to 10.0 L. The initial temperature was 300 K. What
is the change in entropy of the gas?

72. A glass beaker of mass 400 g contains 500 g of water
at 27 °C . The beaker is heated reversibly so that the

temperature of the beaker and water rise gradually to
57 °C . Find the change in entropy of the beaker and water

together.

73. A Carnot engine operates between 550 °C and

20 °C baths and produces 300 kJ of energy in each cycle.

Find the change in entropy of the (a) hot bath and (b) cold
bath, in each Carnot cycle?

74. An ideal gas at temperature T is stored in the left half
of an insulating container of volume V using a partition of
negligible volume (see below). What is the entropy change
per mole of the gas in each of the following cases? (a) The
partition is suddenly removed and the gas quickly fills the
entire container. (b) A tiny hole is punctured in the partition
and after a long period, the gas reaches an equilibrium state
such that there is no net flow through the hole. (c) The
partition is moved very slowly and adiabatically all the
way to the right wall so that the gas finally fills the entire
container.

75. A 0.50-kg piece of aluminum at 250 °C is dropped

into 1.0 kg of water at 20 °C . After equilibrium is reached,

what is the net entropy change of the system?

76. Suppose 20 g of ice at 0 °C is added to 300 g of

water at 60 °C . What is the total change in entropy of the

mixture after it reaches thermal equilibrium?

77. A heat engine operates between two temperatures such
that the working substance of the engine absorbs 5000 J
of heat from the high-temperature bath and rejects 3000
J to the low-temperature bath. The rest of the energy is
converted into mechanical energy of the turbine. Find (a)
the amount of work produced by the engine and (b) the
efficiency of the engine.

78. A thermal engine produces 4 MJ of electrical energy
while operating between two thermal baths of different
temperatures. The working substance of the engine rejects
5 MJ of heat to the cold temperature bath. What is the
efficiency of the engine?

79. A coal power plant consumes 100,000 kg of coal
per hour and produces 500 MW of power. If the heat of
combustion of coal is 30 MJ/kg, what is the efficiency of
the power plant?

80. A Carnot engine operates in a Carnot cycle between a
heat source at 550 °C and a heat sink at 20 °C. Find the
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efficiency of the Carnot engine.

81. A Carnot engine working between two heat baths of
temperatures 600 K and 273 K completes each cycle in 5
sec. In each cycle, the engine absorbs 10 kJ of heat. Find
the power of the engine.

82. A Carnot cycle working between 100 °C and 30 °C
is used to drive a refrigerator between −10 °C and 30 °C.
How much energy must the Carnot engine produce per
second so that the refrigerator is able to discard 10 J of
energy per second?

CHALLENGE PROBLEMS

83. (a) An infinitesimal amount of heat is added reversibly
to a system. By combining the first and second laws, show
that dU = TdS − dW . (b) When heat is added to an ideal

gas, its temperature and volume change from
T1 and V1 to T2 and V2 . Show that the entropy change of

n moles of the gas is given by

ΔS = nCv lnT2
T1

+ nR lnV2
V1

.

84. Using the result of the preceding problem, show that

for an ideal gas undergoing an adiabatic process, TV γ − 1

is constant.

85. With the help of the two preceding problems, show
that ΔS between states 1 and 2 of n moles an ideal gas is

given by

ΔS = nC p lnT2
T1

− nR ln p2
p1

.

86. A cylinder contains 500 g of helium at 120 atm and
20 °C . The valve is leaky, and all the gas slowly escapes

isothermally into the atmosphere. Use the results of the
preceding problem to determine the resulting change in
entropy of the universe.

87. A diatomic ideal gas is brought from an initial
equilibrium state at p1 = 0.50 atm and T1 = 300 K to a

final stage with p2 = 0.20 atm and T1 = 500 K. Use the

results of the previous problem to determine the entropy
change per mole of the gas.

88. The gasoline internal combustion engine operates in
a cycle consisting of six parts. Four of these parts involve,
among other things, friction, heat exchange through finite
temperature differences, and accelerations of the piston; it
is irreversible. Nevertheless, it is represented by the ideal
reversible Otto cycle, which is illustrated below. The
working substance of the cycle is assumed to be air. The six
steps of the Otto cycle are as follows:

i. Isobaric intake stroke (OA). A mixture of
gasoline and air is drawn into the combustion
chamber at atmospheric pressure p0 as the piston

expands, increasing the volume of the cylinder
from zero to VA .

ii. Adiabatic compression stroke (AB). The
temperature of the mixture rises as the piston
compresses it adiabatically from a volume
VA to VB .

iii. Ignition at constant volume (BC). The mixture
is ignited by a spark. The combustion happens so
fast that there is essentially no motion of the piston.
During this process, the added heat Q1 causes the

pressure to increase from pB to pC at the constant

volume VB( = VC) .

iv. Adiabatic expansion (CD). The heated mixture
of gasoline and air expands against the piston,
increasing the volume from VC to VD . This is

called the power stroke, as it is the part of the cycle
that delivers most of the power to the crankshaft.
v. Constant-volume exhaust (DA). When the
exhaust valve opens, some of the combustion
products escape. There is almost no movement of
the piston during this part of the cycle, so the
volume remains constant at VA( = VD) . Most of

the available energy is lost here, as represented by
the heat exhaust Q2 .

vi. Isobaric compression (AO). The exhaust valve
remains open, and the compression from VA to

zero drives out the remaining combustion products.

(a) Using (i) e = W/Q1 ; (ii) W = Q1 − Q2 ; and (iii)

Q1 = nCv(TC − TB) , Q2 = nCv(TD − TA) , show that

e = 1 − TD − TA
TC − TB

.

(b) Use the fact that steps (ii) and (iv) are adiabatic to show
that

e = 1 − 1
rγ − 1 ,

where r = VA/VB . The quantity r is called the

compression ratio of the engine.
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(c) In practice, r is kept less than around 7. For larger
values, the gasoline-air mixture is compressed to
temperatures so high that it explodes before the finely
timed spark is delivered. This preignition causes engine
knock and loss of power. Show that for r = 6 and γ = 1.4
(the value for air), e = 0.51 , or an efficiency of 51%.
Because of the many irreversible processes, an actual
internal combustion engine has an efficiency much less
than this ideal value. A typical efficiency for a tuned engine
is about 25% to 30% .

89. An ideal diesel cycle is shown below. This cycle
consists of five strokes. In this case, only air is drawn into
the chamber during the intake stroke OA. The air is then
compressed adiabatically from state A to state B, raising its
temperature high enough so that when fuel is added during
the power stroke BC, it ignites. After ignition ends at C,
there is a further adiabatic power stroke CD. Finally, there
is an exhaust at constant volume as the pressure drops from
pD to pA , followed by a further exhaust when the piston

compresses the chamber volume to zero.

(a) Use W = Q1 − Q2 , Q1 = nC p(TC − TB) , and

Q2 = nCv(TD − TA) to show that

e = W
Q1

= 1 − TD − TA
γ(TC − TB) .

(b) Use the fact that A → B and C → D are adiabatic to

show that

e = 1 − 1
γ

⎛
⎝

VC
VD

⎞
⎠

γ
− ⎛

⎝
VB
V A

⎞
⎠

γ

⎛
⎝

VC
VD

⎞
⎠ − ⎛

⎝
VB
V A

⎞
⎠

.

(c) Since there is no preignition (remember, the chamber
does not contain any fuel during the compression), the
compression ratio can be larger than that for a gasoline
engine. Typically, VA/VB = 15 and VD/VC = 5 . For these

values and γ = 1.4, show that ε = 0.56 , or an efficiency

of 56% . Diesel engines actually operate at an efficiency

of about 30% to 35% compared with 25% to 30% for

gasoline engines.

90. Consider an ideal gas Joule cycle, also called the
Brayton cycle, shown below. Find the formula for
efficiency of the engine using this cycle in terms of P1 ,

P2 , and γ .

91. Derive a formula for the coefficient of performance
of a refrigerator using an ideal gas as a working substance
operating in the cycle shown below in terms of the
properties of the three states labeled 1, 2, and 3.

92. Two moles of nitrogen gas, with γ = 7/5 for ideal

diatomic gases, occupies a volume of 10−2 m3 in an

insulated cylinder at temperature 300 K. The gas is
adiabatically and reversibly compressed to a volume of 5
L. The piston of the cylinder is locked in its place, and
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the insulation around the cylinder is removed. The heat-
conducting cylinder is then placed in a 300-K bath. Heat
from the compressed gas leaves the gas, and the
temperature of the gas becomes 300 K again. The gas is
then slowly expanded at the fixed temperature 300 K until

the volume of the gas becomes 10−2 m3 , thus making a

complete cycle for the gas. For the entire cycle, calculate
(a) the work done by the gas, (b) the heat into or out of the

gas, (c) the change in the internal energy of the gas, and (d)
the change in entropy of the gas.

93. A Carnot refrigerator, working between 0 °C and

30 °C is used to cool a bucket of water containing

10−2 m3 of water at 30 °C to 5 °C in 2 hours. Find the

total amount of work needed.
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