PREFACE

Welcome to *University Physics*, an OpenStax resource. This textbook was written to increase student access to high-quality learning materials, maintaining highest standards of academic rigor at little to no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University, and it's our mission to improve student access to education. Our first openly licensed college textbook was published in 2012 and our library has since scaled to over 20 books used by hundreds of thousands of students across the globe. Our adaptive learning technology, designed to improve learning outcomes through personalized educational paths, is currently being piloted for K–12 and college. The OpenStax mission is made possible through the generous support of philanthropic foundations. Through these partnerships and with the help of additional low-cost resources from our OpenStax partners, OpenStax is breaking down the most common barriers to learning and empowering students and instructors to succeed.

About OpenStax Resources

Customization

University Physics is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which means that you can distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections in your syllabus in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web view of your book.

Faculty also have the option of creating a customized version of their OpenStax book through the OpenStax Custom platform. The custom version can be made available to students in low-cost print or digital form through their campus bookstore. Visit your book page on openstax.org for a link to your book on OpenStax Custom.

Errata

All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors sometimes occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary. If you have a correction to suggest, submit it through the link on your book page on openstax.org. Subject matter experts review all errata suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list of past errata changes on your book page on openstax.org.

Format

You can access this textbook for free in web view or PDF through openstax.org, and for a low cost in print.

About University Physics

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them.

Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency.

Coverage and Scope

Our *University Physics* textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project.

VOLUME I

Unit 1: Mechanics

Chapter 1: Units and Measurement

Chapter 2: Vectors

Chapter 3: Motion Along a Straight Line

Chapter 4: Motion in Two and Three Dimensions

Chapter 5: Newton's Laws of Motion

Chapter 6: Applications of Newton's Laws

Chapter 7: Work and Kinetic Energy

Chapter 8: Potential Energy and Conservation of Energy

Chapter 9: Linear Momentum and Collisions

Chapter 10: Fixed-Axis Rotation

Chapter 11: Angular Momentum

Chapter 12: Static Equilibrium and Elasticity

Chapter 13: Gravitation

Chapter 14: Fluid Mechanics

Unit 2: Waves and Acoustics

Chapter 15: Oscillations

Chapter 16: Waves

Chapter 17: Sound

VOLUME II

Unit 1: Thermodynamics

Chapter 1: Temperature and Heat

Chapter 2: The Kinetic Theory of Gases

Chapter 3: The First Law of Thermodynamics

Chapter 4: The Second Law of Thermodynamics

Unit 2: Electricity and Magnetism

Chapter 5: Electric Charges and Fields

Chapter 6: Gauss's Law

Chapter 7: Electric Potential

Chapter 8: Capacitance

Chapter 9: Current and Resistance

Chapter 10: Direct-Current Circuits

Chapter 11: Magnetic Forces and Fields

Chapter 12: Sources of Magnetic Fields

Chapter 13: Electromagnetic Induction

Chapter 14: Inductance

Chapter 15: Alternating-Current Circuits

Chapter 16: Electromagnetic Waves

VOLUME III

Unit 1: Optics

Chapter 1: The Nature of Light

Chapter 2: Geometric Optics and Image Formation

Chapter 3: Interference Chapter 4: Diffraction

Unit 2: Modern Physics

Chapter 5: Relativity

Chapter 6: Photons and Matter Waves

Chapter 7: Quantum Mechanics

Chapter 8: Atomic Structure

Chapter 9: Condensed Matter Physics

Chapter 10: Nuclear Physics

Chapter 11: Particle Physics and Cosmology

Pedagogical Foundation

Throughout *University Physics* you will find derivations of concepts that present classical ideas and techniques, as well as modern applications and methods. Most chapters start with observations or experiments that place the material in a context of physical experience. Presentations and explanations rely on years of classroom experience on the part of long-time physics professors, striving for a balance of clarity and rigor that has proven successful with their students. Throughout the text, links enable students to review earlier material and then return to the present discussion, reinforcing connections between topics. Key historical figures and experiments are discussed in the main text (rather than in boxes or sidebars), maintaining a focus on the development of physical intuition. Key ideas, definitions, and equations are highlighted in the text and listed in summary form at the end of each chapter. Examples and chapter-opening images often include contemporary applications from daily life or modern science and engineering that students can relate to, from smart phones to the internet to GPS devices.

Assessments That Reinforce Key Concepts

In-chapter **Examples** generally follow a three-part format of Strategy, Solution, and Significance to emphasize how to approach a problem, how to work with the equations, and how to check and generalize the result. Examples are often followed by **Check Your Understanding** questions and answers to help reinforce for students the important ideas of the examples. **Problem-Solving Strategies** in each chapter break down methods of approaching various types of problems into steps students can follow for guidance. The book also includes exercises at the end of each chapter so students can practice what they've learned.

Conceptual questions do not require calculation but test student learning of the key concepts.

Problems categorized by section test student problem-solving skills and the ability to apply ideas to practical situations.

Additional Problems apply knowledge across the chapter, forcing students to identify what concepts and equations are appropriate for solving given problems. Randomly located throughout the problems are **Unreasonable Results** exercises that ask students to evaluate the answer to a problem and explain why it is not reasonable and what assumptions made might not be correct.

Challenge Problems extend text ideas to interesting but difficult situations.

Answers for selected exercises are available in an **Answer Key** at the end of the book.

Additional Resources

Student and Instructor Resources

We've compiled additional resources for both students and instructors, including Getting Started Guides, PowerPoint slides, and answer and solution guides for instructors and students. Instructor resources require a verified instructor account, which can be requested on your openstax.org log-in. Take advantage of these resources to supplement your OpenStax book.

Partner Resources

OpenStax partners are our allies in the mission to make high-quality learning materials affordable and accessible to students and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner resources for your text, visit your book page on openstax.org.

About the Authors

Senior Contributing Authors

Samuel J. Ling, Truman State University

Dr. Samuel Ling has taught introductory and advanced physics for over 25 years at Truman State University, where he is currently Professor of Physics and the Department Chair. Dr. Ling has two PhDs from Boston University, one in Chemistry and the other in Physics, and he was a Research Fellow at the Indian Institute of Science, Bangalore, before joining Truman. Dr. Ling is also an author of *A First Course in Vibrations and Waves*, published by Oxford University Press. Dr. Ling has considerable experience with research in Physics Education and has published research on collaborative learning methods in physics teaching. He was awarded a Truman Fellow and a Jepson fellow in recognition of his innovative teaching methods. Dr. Ling's research publications have spanned Cosmology, Solid State Physics, and Nonlinear Optics.

Jeff Sanny, Loyola Marymount University

Dr. Jeff Sanny earned a BS in Physics from Harvey Mudd College in 1974 and a PhD in Solid State Physics from the University of California–Los Angeles in 1980. He joined the faculty at Loyola Marymount University in the fall of 1980. During his tenure, he has served as department Chair as well as Associate Dean. Dr. Sanny enjoys teaching introductory physics in particular. He is also passionate about providing students with research experience and has directed an active undergraduate student research group in space physics for many years.

Bill Moebs, PhD

Dr. William Moebs earned a BS and PhD (1959 and 1965) from the University of Michigan. He then joined their staff as a Research Associate for one year, where he continued his doctoral research in particle physics. In 1966, he accepted an appointment to the Physics Department of Indiana Purdue Fort Wayne (IPFW), where he served as Department Chair from 1971 to 1979. In 1979, he moved to Loyola Marymount University (LMU), where he served as Chair of the Physics Department from 1979 to 1986. He retired from LMU in 2000. He has published research in particle physics, chemical kinetics, cell division, atomic physics, and physics teaching.

Contributing Authors

David Anderson, Albion College Daniel Bowman, Ferrum College Dedra Demaree, Georgetown University Gerald Friedman, Santa Fe Community College Lev Gasparov, University of North Florida Edw. S. Ginsberg, University of Massachusetts Alice Kolakowska, University of Memphis Lee LaRue, Paris Junior College Mark Lattery, University of Wisconsin Richard Ludlow, Daniel Webster College Patrick Motl, Indiana University-Kokomo Tao Pang, University of Nevada-Las Vegas Kenneth Podolak, Plattsburgh State University Takashi Sato, Kwantlen Polytechnic University David Smith, University of the Virgin Islands Joseph Trout, Richard Stockton College Kevin Wheelock, Bellevue College

Reviewers

Salameh Ahmad, Rochester Institute of Technology–Dubai John Aiken, University of Colorado–Boulder Anand Batra, Howard University
Raymond Benge, Terrant County College
Gavin Buxton, Robert Morris University
Erik Christensen, South Florida State College
Clifton Clark, Fort Hays State University
Nelson Coates, California Maritime Academy
Herve Collin, Kapi'olani Community College
Carl Covatto, Arizona State University
Alexander Cozzani, Imperial Valley College
Danielle Dalafave, The College of New Jersey
Nicholas Darnton, Georgia Institute of Technology

Robert Edmonds, Tarrant County College William Falls, Erie Community College Stanley Forrester, Broward College Umesh Garg, University of Notre Dame Maurizio Giannotti, Barry University Bryan Gibbs, Dallas County Community College Mark Giroux, East Tennessee State University Matthew Griffiths, University of New Haven Alfonso Hinojosa, University of Texas-Arlington Steuard Jensen, Alma College David Kagan, University of Massachusetts Jill Leggett, Florida State College-Jacksonville Sergei Katsev, University of Minnesota-Duluth Alfredo Louro, University of Calgary James Maclaren, Tulane University Ponn Maheswaranathan, Winthrop University Seth Major, Hamilton College Oleg Maksimov, Excelsior College Aristides Marcano, Delaware State University Marles McCurdy, Tarrant County College James McDonald, University of Hartford Ralph McGrew, SUNY-Broome Community College Paul Miller, West Virginia University Tamar More, University of Portland Farzaneh Najmabadi, University of Phoenix Richard Olenick, The University of Dallas Christopher Porter, Ohio State University Liza Pujji, Manakau Institute of Technology Baishali Ray, Young Harris University Andrew Robinson, Carleton University Aruvana Roy, Young Harris University Abhijit Sarkar, The Catholic University of America Gajendra Tulsian, Daytona State College Adria Updike, Roger Williams University Clark Vangilder, Central Arizona University Steven Wolf, Texas State University Alexander Wurm, Western New England University Lei Zhang, Winston Salem State University

Ulrich Zurcher, Cleveland State University