Setting Limits in the Presence of Nuisance Parameters

Wolfgang A Rolke
Angel M López
Jan Conrad, CERN
Fred James, CERN
The Problem

- \(x \) events in the signal region
- \(y \) events in data sidebands (or from MC), measured with some uncertainty, statistical and systematic
- \(z \) a measurement of the efficiency, measured with some uncertainty, statistical and systematic

→ How do we set limits on the signal rate?
Previous Solution: Cousins-Highland

- Basically, integrate out the nuisance parameter.
- Problem 1: "hidden" Bayesian method – what should be used as a prior?
- Problem 2: does it work, i.e. does it have coverage? So far nobody knows, although we might soon
New Solution – Profile Likelihood

Need some notation:

• x – number of events in signal region
• y – number of events in data sidebands
• τ – relative “size” of background region to signal region, so that y/τ is estimate of background in signal region
• m – number of MC events to test efficiency
• z – number of MC events that survive the cuts

So \(z/m \) is an estimate of the efficiency

Unknown Parameters:
• \(\mu \) – signal rate (what we want to know)
• \(b \) – background rate in signal region
• \(e \) – efficiency
Probability Model:
\(X \sim \text{Pois}(e\mu+b), \ Y \sim \text{Pois}(\tau b), \ Z \sim \text{Binom}(m,e) \)

Loglikelihood:

\[
\ell(\mu,b,e) = (-2) \times (x \log(e\mu+b) - \log(x!) - (e\mu+b) + y \log(\tau b) - \log(y!) - \tau b + \log(m!) - \log(z!) - \log((m-z)!) + z \log(e) + (m-z) \log(1-e))
\]

is a function of all parameters

Idea: for each \(\mu \) find \(b \) and \(e \) which make the observations most likely – profile likelihood
Illustration of Profile Likelihood

- Case: $x=8$
- $y=15$
- $\tau=5.0$
- $e=100\%$ (known)
- μ fixed at 2
 → $bhat = 3.33$
Sometimes this can be done analytically, sometimes (like here) it has to be done numerically.

Result: given the data \((x,y,z,\tau,m)\) the profile likelihood is a function of \(\mu\) alone

\[\rightarrow \text{no more nuisance parameters} \]
One Problem: $x < \frac{y}{\tau}$

- Then mle of $\mu < 0$
- Example: same as before, but $x=2$, so $x - \frac{y}{\tau} = -1.0$
- 90% upper limit is 2.45
Even worse:

- Same as last, but \(y = 35.0 \)
- So we expect 7 events just from background, but we only see 2

Note: even if \(\mu = 0 \) this happens only about 5% of the time.
Two ways to handle this:

• keep y, z, τ, m fixed, find smallest x for which upper limit is greater than 0
 → intuitive meaning of “upper limit”
 “unbounded likelihood method”

• use constrained likelihood, i.e. require $\text{mle} \geq 0$ always
 → uses physical limits on parameters
 “bounded likelihood method”
Method can deal with other situations:

- Background and/or Efficiency are known without error

- Background is Gaussian instead of Poisson:
 \[y \sim N(b, \sigma_b) \]

- Efficiency is Gaussian instead of Binomial:
 \[z \sim N(e, \sigma_e) \]

→ Allows incorporation of systematic errors
So, does it work?

- Confidence Intervals work if they have coverage:
 - Fix μ, b, e, sdb, sde and α
 - Generate $y_1,.., y_n \sim N(b, sdb)$
 - Generate $z_1,.., z_n \sim N(e, sde)$
 - Generate $x_1,.., x_n \sim \text{Pois}(e\mu+ b)$
 - Find $(1-\alpha)100\%$ CI’s (L_i,U_i) for $i=1,..,n$
 - Find percentage p with $L_i \leq \mu \leq U_i$
 - If $p \geq (1-\alpha)100\%$, we have correct coverage
 - Repeat for many values of μ, b, e, sdb, sde and α
Example

- Background – Gaussian with error 0.5
- Efficiency – Gaussian with mean 0.85 and error 0.075
- Signal rate varies from 0 to 10 in steps of 0.1
- Background rate varies from 0 to 10 in steps of 2
- Nominal coverage rate 90%
- Orange – unbounded likelihood
- Blue - bounded likelihood
Features of our Method:

• Always yields positive upper limit
• Smooth transition from upper limits to two-sided intervals
• Now available as part of ROOT: TRolke
• Limits are consistent as errors on nuisance parameters become small:
TRolke Intervals

Use instead of Feldman Cousins?
Isn’t it a marvelous new method?

• See F. James, MINUIT Reference Manual, CERN Library Long Writeup D506, p.5: "The MINOS error for a given parameter is defined as the change in the value of the parameter that causes F' to increase by the amount UP, where F' is the minimum w.r.t to all other free parameters."

NO! It is a marvelous old method ... nobody knew how marvelous though.

Confidence Interval

Profile Likelihood (in X^2 approximation)

$\Delta X^2 = 2.71$ (90%), $\Delta X^2 = 1.07$ (70%)
Summary

• Profile Likelihood is a general technique for dealing with nuisance parameters
• It is familiar to physicists as part of MINUIT
• For the problem of setting limits for rare decays it yields a method with good coverage and some nice properties
• It is available as part of ROOT
• The End